European Route Network Improvement Plan

(ERNIP)

Part 3

Airspace Management Guidelines

-The ASM Handbook-

Airspace Management Handbook for the Application of the Concept of the Flexible Use of Airspace

Edition Number : 5.4
Edition Date : 29/11/2017
Status : Released Issue
Intended for : General Public
This page intentionally left blank
DOCUMENT CHARACTERISTICS

TITLE

European Route Network Improvement Plan
Part 3

Abstract

It specifies the general Airspace Management (ASM) functions and Air Traffic Management (ATM) procedures needed to apply and fully exploit the Concept of the Flexible Use of Airspace.

Keywords

Network Manager CDR CBA Civil/Military
FUA Airspace Utilisation TRA/TSA eAMI
ASM AMC AUP/UUP KPI
FBZ

Authors

EUROCONTROL NMD/NOM/OPL Team

Contact Persons Tel Division
Razvan BUCUROIU + 32 2 729 36 48 NMD / NSD
Catalin LEPADATU + 32 2 729 33 27 NMD / NOM / OPL

STATUS, AUDIENCE AND ACCESSIBILITY

Status Intended for Accessible via
Working Draft General Public Intranet
Draft Operational Stakeholders Extranet
Proposed Issue Restricted Audience Internet
Released Issue Printed and electronic copies of the document can be obtained from the Publications Infocentre
DOCUMENT CHANGE RECORD

The following table records the complete history of the successive editions of and amendments to the present document.

<table>
<thead>
<tr>
<th>Edition Number</th>
<th>Edition Date</th>
<th>Reason for Change</th>
<th>Pages Affected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edition 1.0</td>
<td>05/02/96</td>
<td>Released Issue (Agreed at ANT/8 on 23/01/96)</td>
<td>All</td>
</tr>
<tr>
<td>Edition 2.0</td>
<td>22/10/03</td>
<td>Released Issue (Agreed at ANT/32 on 22/10/03)</td>
<td>All</td>
</tr>
<tr>
<td>Edition 3.0</td>
<td>15/06/10</td>
<td>Released Issue (Agreed at ANT/52 on 15/06/10)</td>
<td>All</td>
</tr>
<tr>
<td>Edition 3.0</td>
<td>15/11/11</td>
<td>Amendment 1 (approved by NETOPS Team on 15/11/2011)</td>
<td>All</td>
</tr>
<tr>
<td>Edition 4.0</td>
<td>19/04/12</td>
<td>Released Issue (Agreed at NETOPS/3 on 08/05/12)</td>
<td>All</td>
</tr>
<tr>
<td>Edition 4.0</td>
<td>07/09/2012</td>
<td>editorials, Annex 11</td>
<td>All</td>
</tr>
<tr>
<td>Edition 4.0</td>
<td>24/10/2012</td>
<td>Released Issue agreed at NETOPS/04 on 24/10/12</td>
<td>All</td>
</tr>
<tr>
<td>Edition 4.0</td>
<td>27/02/2013</td>
<td>Released Issue agreed at NETOPS/05 on 27/02/13</td>
<td>pages 2-8,</td>
</tr>
<tr>
<td>Edition 5.0</td>
<td>24/10/2013</td>
<td>Released Issue agreed at NETOPS/07 on 24/10/13</td>
<td>All</td>
</tr>
<tr>
<td>Edition 5.0</td>
<td>28/11/2013</td>
<td>Released Issue approved by Network Management Board on 28 November 2013</td>
<td>none</td>
</tr>
<tr>
<td>Edition 5.1</td>
<td>23/10/2014</td>
<td>Released Issue agreed at NETOPS/09 on 21/05/14 and NETOPS/10 on 23/10/14 and approved by NMB on 21/11/14</td>
<td>Chapter 4.5, 4.8, 6.1, 7.2 Annex 5, 6</td>
</tr>
<tr>
<td>Edition 5.2</td>
<td>27/11/2015</td>
<td>Release Issue agreed at NETOPS/11 on 25/02/15, NETOPS/12 on 27/05/15, NETOPS/13 on 21/10/15 and approved by NMB on 15/12/15 (approval by correspondence)</td>
<td>Chapter 2.2, 3.2, 3.3, 3.4, 4.5, 4.7, 4.8, 6.2.</td>
</tr>
<tr>
<td>Edition</td>
<td>Release Date</td>
<td>Approval Details</td>
<td>Pages/Sections</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>-----------------</td>
<td>---------------</td>
</tr>
<tr>
<td>5.3</td>
<td>17/11/2016</td>
<td>Release Issue agreed at NETOPS/14, NETOPS/15 and NETOPS/16 and approved by NMB/15 and NMB/17.</td>
<td>Chapter 2.3, 3.3, 3.6, 4.6, 4.7, 4.8, 4.9, 4.11, 6.1, 6.2, Annex 4, 5, 7, 9, 11, 12</td>
</tr>
<tr>
<td>5.4</td>
<td>29/11/2017</td>
<td>Release Issue agreed at NETOPS/17, NETOPS/18 and NETOPS/19 and approved by NMB/19 and NMB/20.</td>
<td>Chapter 2.3-6, 3.2-6, 4.3-11, 6.1, 6.2, Annex 3, 4, 5, 6, 7, 11, 12</td>
</tr>
</tbody>
</table>
CHECKLIST

<table>
<thead>
<tr>
<th>Page</th>
<th>Date</th>
<th>Page</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>07/09/12</td>
<td>4-1</td>
<td>19/04/12</td>
</tr>
<tr>
<td>ii</td>
<td>07/09/12</td>
<td>4-2</td>
<td>19/04/12</td>
</tr>
<tr>
<td>iii</td>
<td>07/09/12</td>
<td>4-3</td>
<td>29/11/17</td>
</tr>
<tr>
<td>iv</td>
<td>07/09/12</td>
<td>4-4</td>
<td>19/04/12</td>
</tr>
<tr>
<td>v</td>
<td>03/11/15</td>
<td>4-5</td>
<td>29/11/17</td>
</tr>
<tr>
<td>vi</td>
<td>07/09/12</td>
<td>4-6</td>
<td>29/11/17</td>
</tr>
<tr>
<td>vii</td>
<td>03/11/15</td>
<td>4-7</td>
<td>29/11/17</td>
</tr>
<tr>
<td>viii</td>
<td>17/11/16</td>
<td>4-8</td>
<td>29/11/17</td>
</tr>
<tr>
<td>ix</td>
<td>17/11/16</td>
<td>4-9</td>
<td>29/11/17</td>
</tr>
<tr>
<td>x</td>
<td>03/11/15</td>
<td>4-10</td>
<td>29/11/17</td>
</tr>
<tr>
<td>xi</td>
<td>07/09/12</td>
<td>4-11</td>
<td>29/11/17</td>
</tr>
<tr>
<td>xii</td>
<td>07/09/12</td>
<td>5-1</td>
<td>19/04/12</td>
</tr>
<tr>
<td>xiii</td>
<td>07/09/12</td>
<td>5-2</td>
<td>19/04/12</td>
</tr>
<tr>
<td>xiv</td>
<td>07/09/12</td>
<td>5-3</td>
<td>24/10/13</td>
</tr>
<tr>
<td>xv</td>
<td>07/09/12</td>
<td>5-4</td>
<td>19/04/12</td>
</tr>
<tr>
<td>xvi</td>
<td>24/10/13</td>
<td>5-5</td>
<td>07/09/12</td>
</tr>
<tr>
<td>xvii</td>
<td>07/09/12</td>
<td>5-6</td>
<td>19/04/12</td>
</tr>
<tr>
<td>xviii</td>
<td>29/11/17</td>
<td>6-1</td>
<td>29/11/17</td>
</tr>
<tr>
<td>xix</td>
<td>29/11/17</td>
<td>6-2</td>
<td>29/11/17</td>
</tr>
<tr>
<td>xxi</td>
<td>29/11/17</td>
<td>7-1</td>
<td>24/10/13</td>
</tr>
<tr>
<td>1-1</td>
<td>19/04/12</td>
<td>7-2</td>
<td>29/11/17</td>
</tr>
<tr>
<td>1-2</td>
<td>07/09/12</td>
<td>7-3</td>
<td>29/11/17</td>
</tr>
<tr>
<td>1-3</td>
<td>19/04/12</td>
<td>Bibliography</td>
<td>19/04/12</td>
</tr>
<tr>
<td>2-1</td>
<td>24/10/13</td>
<td>List of Annexes</td>
<td>17/11/16</td>
</tr>
<tr>
<td>2-2</td>
<td>03/11/15</td>
<td>Annex 1</td>
<td>19/04/12</td>
</tr>
<tr>
<td>2-3</td>
<td>29/11/17</td>
<td>Annex 2</td>
<td>19/04/12</td>
</tr>
<tr>
<td>2-4</td>
<td>24/10/13</td>
<td>Annex 3</td>
<td>29/11/17</td>
</tr>
<tr>
<td>2-5</td>
<td>29/11/17</td>
<td>Annex 4</td>
<td>29/11/17</td>
</tr>
<tr>
<td>2-6</td>
<td>29/11/17</td>
<td>Annex 5</td>
<td>29/11/17</td>
</tr>
<tr>
<td>3-1</td>
<td>19/04/12</td>
<td>Annex 6</td>
<td>29/11/17</td>
</tr>
<tr>
<td>3-2</td>
<td>29/11/17</td>
<td>Annex 7</td>
<td>29/11/17</td>
</tr>
<tr>
<td>3-3</td>
<td>29/11/17</td>
<td>Annex 8</td>
<td>03/11/15</td>
</tr>
<tr>
<td>3-4</td>
<td>29/11/17</td>
<td>Annex 9</td>
<td>17/11/16</td>
</tr>
<tr>
<td>3-5</td>
<td>29/11/17</td>
<td>Annex 10</td>
<td>03/11/15</td>
</tr>
<tr>
<td>3-6</td>
<td>29/11/17</td>
<td>Annex 11</td>
<td>29/11/17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Annex 12</td>
<td>29/11/17</td>
</tr>
</tbody>
</table>
This page intentionally left blank
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOCUMENT CHARACTERISTICS</td>
<td>v</td>
</tr>
<tr>
<td>DOCUMENT CHANGE RECORD</td>
<td>vii</td>
</tr>
<tr>
<td>CHECKLIST</td>
<td>ix</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF ANNEXES</td>
<td>xv</td>
</tr>
<tr>
<td>ABBREVIATIONS</td>
<td>xvii</td>
</tr>
<tr>
<td>EXPLANATION OF TERMS</td>
<td>xxi</td>
</tr>
<tr>
<td>1. SECTION 1 - INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Introduction to the Handbook</td>
<td></td>
</tr>
<tr>
<td>1.1.1 Purpose</td>
<td>1</td>
</tr>
<tr>
<td>1.1.2 Status</td>
<td>1</td>
</tr>
<tr>
<td>1.1.3 Scope</td>
<td>1</td>
</tr>
<tr>
<td>1.1.4 Relationship with the EUROCONTROL FUA Specification</td>
<td>1</td>
</tr>
<tr>
<td>1.1.5 Applicability</td>
<td>1</td>
</tr>
<tr>
<td>1.1.6 Conventions</td>
<td>2</td>
</tr>
<tr>
<td>1.2 Background</td>
<td>2</td>
</tr>
<tr>
<td>1.2.1 ASM Objective</td>
<td>2</td>
</tr>
<tr>
<td>1.2.2 Introduction of the FUA Concept</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Structure of the Handbook</td>
<td>3</td>
</tr>
<tr>
<td>2. SECTION 2 - THE CONCEPT OF FLEXIBLE USE OF AIRSPACE</td>
<td>5</td>
</tr>
<tr>
<td>2.1 General Introduction</td>
<td></td>
</tr>
<tr>
<td>2.1.1 The Basis of the FUA Concept</td>
<td>5</td>
</tr>
<tr>
<td>2.1.2 Application of the FUA Concept</td>
<td>7</td>
</tr>
<tr>
<td>2.2 The three ASM Levels</td>
<td></td>
</tr>
<tr>
<td>2.2.1 Introduction</td>
<td>7</td>
</tr>
<tr>
<td>2.2.2 ASM LEVEL 1 - National and International Airspace Policy</td>
<td>7</td>
</tr>
<tr>
<td>2.2.3 ASM LEVEL 2 - Day to Day Allocation of Airspace</td>
<td>8</td>
</tr>
<tr>
<td>2.2.4 ASM LEVEL 3 - Real time Use of Airspace</td>
<td>8</td>
</tr>
<tr>
<td>2.3 Flexible Airspace Structures and Procedures</td>
<td>8</td>
</tr>
<tr>
<td>2.3.1 General</td>
<td>8</td>
</tr>
<tr>
<td>2.3.2 Conditional Routes</td>
<td>8</td>
</tr>
<tr>
<td>2.3.3 Temporary Airspace Restriction and Reservation</td>
<td>10</td>
</tr>
<tr>
<td>2.3.4 Cross-Border Areas</td>
<td>11</td>
</tr>
<tr>
<td>2.3.5 Reduced/Prior Coordination Airspace Procedures</td>
<td>11</td>
</tr>
<tr>
<td>2.4 Particular Application of the FUA Concept</td>
<td>13</td>
</tr>
<tr>
<td>2.4.1 ATS Routes</td>
<td>13</td>
</tr>
<tr>
<td>2.4.2 Airspace Restrictions - R, D, P Areas</td>
<td>13</td>
</tr>
<tr>
<td>2.4.3 Free Route Operations Airspace</td>
<td>13</td>
</tr>
<tr>
<td>2.4.4 Controlled Airspace</td>
<td>14</td>
</tr>
<tr>
<td>2.4.5 Uncontrolled Airspace</td>
<td>14</td>
</tr>
<tr>
<td>2.5 Transition to the FUA Concept</td>
<td>15</td>
</tr>
<tr>
<td>2.6 ATS/ASM/ATFCM Relationship</td>
<td>15</td>
</tr>
</tbody>
</table>
2.6.1 General 15
2.6.2 ASM/ATFCM Relationship at Strategic Level - ASM Level 1 16
2.6.3 ASM/ATFCM Relationship at Pre-Tactical Level - ASM Level 2 17
2.6.4 ASM/ATFCM Relationship at Tactical Level - ASM Level 3 17

3. SECTION 3 - STRATEGIC AIRSPACE MANAGEMENT (ASM LEVEL 1) 19
3.1 General 19
3.2 National Collaborative Airspace Planning 19
3.2.1 Strategic Objectives 19
3.2.2 Responsibilities 19
3.2.3 Principles 20
3.2.4 Collaborative Working Organisation 21
3.2.5 Common Airspace Policy Formulation and Review Process 22
3.2.6 Common Airspace Change Process 24
3.2.7 ASM Level 1 Process for delineation of FRA Operations 26
3.2.8 Dynamic Airspace Management 27
3.3 International Collaborative Airspace Planning 36
3.3.1 General 36
3.3.2 Airspace Configurations 36
3.3.3 ASM over the High Seas 37
3.3.4 Early Access to Weekend Routes Process 38
3.3.5 Other Busy Periods Arrangements 39
3.3.6 Cross Border / FIR/UIR Boundary Operations 40
3.3.7 ATS Route Network and Other Airspace Structures Development 43
3.4 National and International Processes at ASM Level 1 for the Airspace Allocation at ASM Level 2 45
3.4.1 The CDR Concept and the Temporary Airspace Allocation (TAA) Process 45
3.4.2 Free Route Operations Airspace and the Temporary Airspace Allocation (TAA) Process 45
3.4.3 Establishment at ASM Level 1 of Priority Rules and Negotiation Process for the Pre-Tactical Allocation of Airspace by AMC 46
3.5 National and International Processes at ASM Level 1 for the Airspace Use at ASM Level 3 46
3.6 ASM Solutions 46
3.6.1 Objectives 46
3.6.2 Scope 47
3.6.3 Process Description 47
3.6.4 Methodology 48
3.6.5 Milestones 48

4. SECTION 4 – PRE-TACTICAL AIRSPACE MANAGEMENT (ASM LEVEL 2) 51
4.1 General 51
4.2 Airspace Requests - Approved Agencies (AAs) 51
4.3 CDR Requests - ACCs/FMPs 52
4.4 Restricted/Danger Areas - Notification of Reduced Activity 54
4.5 Airspace Management Cells (AMCs) - Airspace Allocation 54
4.5.1 General 54
4.5.2 Responsibilities 55
4.5.3 Lead AMC Concept 57
4.6 Extended Holidays Period and Special Events 57
4.7 International Functions 58
4.7.1 Network Manager (NM) 58
4.7.2 Aircraft Operators (AOs) FUA Responsibilities 60
4.7.3 NM Environment Data Base 63
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.7.4</td>
<td>Integrated Initial Flight Plan Processing System (IFPS)</td>
<td>64</td>
</tr>
<tr>
<td>4.7.5</td>
<td>Aircraft Operator “What if” Re-Route (AWIR) Function</td>
<td>64</td>
</tr>
<tr>
<td>4.7.6</td>
<td>Airspace Data Repository (ADR)</td>
<td>65</td>
</tr>
<tr>
<td>4.7.7</td>
<td>ASM Support Tools</td>
<td>67</td>
</tr>
<tr>
<td>4.8</td>
<td>ASM Level 2 Timetable</td>
<td>67</td>
</tr>
<tr>
<td>4.8.1</td>
<td>Up to 48 Hours In Advance</td>
<td>67</td>
</tr>
<tr>
<td>4.8.2</td>
<td>The Day before Operations (D-1)</td>
<td>67</td>
</tr>
<tr>
<td>4.8.3</td>
<td>Release of Areas and or New Availability of CDRs</td>
<td>69</td>
</tr>
<tr>
<td>4.8.4</td>
<td>Restricted Airspaces (RSA) Management in AUP/UUP</td>
<td>72</td>
</tr>
<tr>
<td>4.8.5</td>
<td>Unplanned Activation of TSA/TRA</td>
<td>74</td>
</tr>
<tr>
<td>4.8.6</td>
<td>Use of Tactical Management</td>
<td>78</td>
</tr>
<tr>
<td>4.9</td>
<td>ASM Solutions</td>
<td>79</td>
</tr>
<tr>
<td>4.9.1</td>
<td>From D-6 to D-2</td>
<td>79</td>
</tr>
<tr>
<td>4.9.2</td>
<td>The Day before Operations</td>
<td>79</td>
</tr>
<tr>
<td>4.9.3</td>
<td>Airspace changes after AUP</td>
<td>80</td>
</tr>
<tr>
<td>4.9.4</td>
<td>The Day of Operations</td>
<td>80</td>
</tr>
<tr>
<td>4.10</td>
<td>Temporary and Contingency Procedures</td>
<td>81</td>
</tr>
<tr>
<td>4.10.1</td>
<td>FUA Temporary Instruction (FTI)</td>
<td>81</td>
</tr>
<tr>
<td>4.10.2</td>
<td>Implementation Procedure</td>
<td>81</td>
</tr>
<tr>
<td>4.10.3</td>
<td>Subsequent Treatment</td>
<td>81</td>
</tr>
<tr>
<td>4.10.4</td>
<td>Fields of Application</td>
<td>82</td>
</tr>
<tr>
<td>4.11</td>
<td>ASM over the High Seas at ASM Level 2</td>
<td>83</td>
</tr>
<tr>
<td>4.11.1</td>
<td>General</td>
<td>83</td>
</tr>
<tr>
<td>4.11.2</td>
<td>Activation of Danger Areas over the High Seas</td>
<td>83</td>
</tr>
<tr>
<td>4.11.3</td>
<td>Activation of CDRs over the High Seas</td>
<td>83</td>
</tr>
<tr>
<td>4.11.4</td>
<td>Alternative Method to Improve the Mechanism for the International Co-ordination</td>
<td>83</td>
</tr>
<tr>
<td>4.11.5</td>
<td>AMC Related Tasks</td>
<td>84</td>
</tr>
<tr>
<td>5.1</td>
<td>General</td>
<td>85</td>
</tr>
<tr>
<td>5.2</td>
<td>Modes of Real time Civil/military Coordination</td>
<td>85</td>
</tr>
<tr>
<td>5.3</td>
<td>Coordination Procedures for ATS Routes and Airspace Crossing</td>
<td>86</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Coordination Procedures for Controlled Airspace or ATS Routes Crossings by OAT</td>
<td>86</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Coordination Procedures for Airspace Crossings or Off-Route Flying by GAT</td>
<td>87</td>
</tr>
<tr>
<td>5.4</td>
<td>System Support Functions</td>
<td>88</td>
</tr>
<tr>
<td>5.4.1</td>
<td>General</td>
<td>88</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Airspace Use Data Function</td>
<td>88</td>
</tr>
<tr>
<td>5.4.3</td>
<td>Basic Flight Plan Information - Identification Function</td>
<td>88</td>
</tr>
<tr>
<td>5.4.4</td>
<td>Current Flight Plan Information - Separate Function</td>
<td>88</td>
</tr>
<tr>
<td>5.4.5</td>
<td>Silent Coordination Functionality - Airspace Crossing Function</td>
<td>89</td>
</tr>
<tr>
<td>5.4.6</td>
<td>Airspace Crossing Intention Notification Function</td>
<td>89</td>
</tr>
<tr>
<td>5.4.7</td>
<td>Airspace Crossing Dialogue Function</td>
<td>89</td>
</tr>
<tr>
<td>5.5</td>
<td>Common or Shared Use of Airspace</td>
<td>90</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Common Use of Airspace</td>
<td>90</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Shared Use of Airspace</td>
<td>90</td>
</tr>
<tr>
<td>5.6</td>
<td>Additional ASM Procedures</td>
<td>90</td>
</tr>
<tr>
<td>5.6.1</td>
<td>General</td>
<td>90</td>
</tr>
<tr>
<td>5.6.2</td>
<td>Controlled Airspace</td>
<td>91</td>
</tr>
<tr>
<td>5.6.3</td>
<td>Outside of Controlled Airspace</td>
<td>93</td>
</tr>
<tr>
<td>5.6.4</td>
<td>Promulgation and Notification</td>
<td>94</td>
</tr>
</tbody>
</table>
6. SECTION 6 - PUBLICATION OF ASM INFORMATION

6.1 AIP/NOTAM for ASM Level 1 Decision
6.2 Specific ASM Messages for ASM Level 2 Decisions
 6.2.1 Airspace Use Plan (AUP)
 6.2.2 Updated Airspace Use Plan (UUP)
 6.2.3 Electronic Airspace Management Information (eAMI)

7. SECTION 7 - PERFORMANCE REQUIREMENTS

7.1 General
 7.1.1 Introduction
 7.1.2 FUA Indicators
 7.1.3 Definitions
 7.1.4 Acronyms
7.2 FUA Use Rates (FUR)
 7.2.1 Rate of CDR Availability (RoCA)
 7.2.2 Rate of Airspace Availability (RoAA)
 7.2.3 Rate of Aircraft Interested (RAI)
 7.2.4 Rate of Actual Use of CDR or Reserved/ Restricted Airspace (RAU)
 7.2.5 Time Window Availability (TWAI)
7.3 Flight Economy Indicators (FEI)
 7.3.1 General
 7.3.2 Potential Flight Economy (PFE)
 7.3.3 Total Potential Flight Economy (TPFE)
 7.3.4 Flight Economy Realised (FER)
 7.3.5 Flight Economy Lost (FEL)
 7.3.6 Flight Economy Offered (FEO)
 7.3.7 Actual Flight Economy (AFE)

BIBLIOGRAPHY

LIST OF ANNEXES
LIST OF ANNEXES

<table>
<thead>
<tr>
<th>Annex 1</th>
<th>General Overview and Process of the FUA Concept - Handbook Cross-Reference Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annex 2</td>
<td>ATS Route Network Planning and Development Process</td>
</tr>
<tr>
<td>Annex 3</td>
<td>Common ATS/ASM/ATFCM Timetable</td>
</tr>
<tr>
<td>Annex 4</td>
<td>Airspace Charter</td>
</tr>
<tr>
<td>Annex 5</td>
<td>Description of the Airspace Use Plan</td>
</tr>
<tr>
<td>Annex 6</td>
<td>Description of the Updated Airspace Use Plan</td>
</tr>
<tr>
<td>Annex 7</td>
<td>Illustrative example of an AIP cover page for early access to weekend routes process</td>
</tr>
<tr>
<td>Annex 8</td>
<td>Model State Level Framework Agreement on the Cross-Border / FIR Boundary Operations</td>
</tr>
<tr>
<td>Annex 9</td>
<td>Template Letter of Agreement on Coordination Procedures between Airspace Management Cells (AMCs) in regard to Allocation and Shared Use of Common Cross-Border Areas (CBAs)</td>
</tr>
<tr>
<td>Annex 10</td>
<td>Template Letter of Agreement on Coordination Procedures in regard to Cross-Border Operations in Shared AMC-Manageable Areas</td>
</tr>
<tr>
<td>Annex 12</td>
<td>ASM System Support – Baseline Operational Requirements</td>
</tr>
</tbody>
</table>
ABBREVIATIONS
Abbreviations for which an explanation is given in the ASM Handbook are marked with one asterisk *

5LNC Five Letter Name-Codes (for Designated Points)

AA Approved Agency *
ACC Area Control Centre*
ACP Airspace Crossing Acceptance Message
ADR Airspace Data Repository
ADT Approved Departure Time
AFTN Aeronautical Fixed Telecommunications Network
AIM Air Traffic Flow Management Information Message
AIP Aeronautical Information Publication*
AIS Aeronautical Information Service*
AIXM Aeronautical Information Exchange Model
AMA AMC Manageable Area
AMC Airspace Management Cell*
AME ATM Message Exchange
ANM ATFCM Notification Message*
ANT Airspace & Navigation Team
AO Aircraft Operator*
AOLO Aircraft Operation Liaison Officer
AOWIR Aircraft Operator What if Re-routeing (NM Function)
ARO ATS Reporting Office*
ARN ATS Route Network
ASM Airspace Management*
ASMSG Airspace Management Sub-Group (Sub-Group of NET-OPS Team)
ATC Air Traffic Control*
ATFCM Air Traffic Flow and Capacity Management*
ATM Air Traffic Management (ATS+ASM+ATFCM)*
ATS Air Traffic Services*
ATSU Air Traffic Services Unit*
ATZ Aerodrome Traffic Zone
AUA ATC Unit Airspace
AUAG ATC Unit Airspace Grouping
AUP Airspace Use Plan*
AW Arial Work
AWY Airway*

BFD Basic Flight Data Message
B2B Business to Business
B2C Business to Client

CACD Central Airspace and Capacity Database (former ENV)
CADF ECAC Centralised Airspace Data Function*
CAR Changed Airspace Restriction
CAS Controlled Airspace
CASA NM Computer Assisted Slot Allocation
CBA Cross-Border Area*
CDN Airspace Crossing Coordination Message
CDR Conditional Route*
CEAC NATO Committee for European Airspace Coordination
CFD Change to Flight Data Message
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFL</td>
<td>Cleared Flight Level*</td>
</tr>
<tr>
<td>CHMI</td>
<td>Collaborative Human Machine Interface (CHMI) is a remote tool in use by Network Management clients</td>
</tr>
<tr>
<td>CIAM</td>
<td>Collaboration Interface Airspace Management</td>
</tr>
<tr>
<td>CIDIN</td>
<td>Common ICAO Data Interchange Network</td>
</tr>
<tr>
<td>CMU</td>
<td>Controlling Military Unit</td>
</tr>
<tr>
<td>CPL</td>
<td>Current Flight Plan*</td>
</tr>
<tr>
<td>CTA</td>
<td>Control Area*</td>
</tr>
<tr>
<td>CTR</td>
<td>Control Zone*</td>
</tr>
<tr>
<td>CSO</td>
<td>Customer technical Service desk and Operations</td>
</tr>
<tr>
<td>D</td>
<td>Danger Area</td>
</tr>
<tr>
<td>DAM</td>
<td>Dynamic Airspace Management</td>
</tr>
<tr>
<td>DCT</td>
<td>Direct Routeing</td>
</tr>
<tr>
<td>DES</td>
<td>De-Suspension Message</td>
</tr>
<tr>
<td>DOC</td>
<td>Document</td>
</tr>
<tr>
<td>EANPG</td>
<td>ICAO European Air Navigation Planning Group</td>
</tr>
<tr>
<td>EAPM</td>
<td>ECAC Airspace Planning Manual</td>
</tr>
<tr>
<td>eAMI</td>
<td>Electronic ASM Information</td>
</tr>
<tr>
<td>EAW</td>
<td>Early Access to Weekend Routes</td>
</tr>
<tr>
<td>ECAC</td>
<td>European Civil Aviation Conference</td>
</tr>
<tr>
<td>ENV</td>
<td>NM Environment Database (presently CACD)</td>
</tr>
<tr>
<td>EOBT</td>
<td>Estimated Off-Block Time</td>
</tr>
<tr>
<td>EUR ANP</td>
<td>ICAO European Air Navigation Plan</td>
</tr>
<tr>
<td>FBZ</td>
<td>FPL Buffer Zone</td>
</tr>
<tr>
<td>FDOD</td>
<td>Flight Data Operations Division*</td>
</tr>
<tr>
<td>FIR</td>
<td>Flight Information Region*</td>
</tr>
<tr>
<td>FLS</td>
<td>Flight Suspension Message</td>
</tr>
<tr>
<td>FMD</td>
<td>Flow Management Division* (NM)</td>
</tr>
<tr>
<td>FMP</td>
<td>Flow Management Position*</td>
</tr>
<tr>
<td>FMS</td>
<td>Flight Management System</td>
</tr>
<tr>
<td>FMU</td>
<td>Flow Management Unit</td>
</tr>
<tr>
<td>FPL</td>
<td>Filed Flight Plan*</td>
</tr>
<tr>
<td>FPPS</td>
<td>Flight Plan Processing System</td>
</tr>
<tr>
<td>FRA</td>
<td>Free Route Operations Airspace</td>
</tr>
<tr>
<td>FTI</td>
<td>FUA Temporary Instruction*</td>
</tr>
<tr>
<td>FUA</td>
<td>Flexible Use of Airspace*</td>
</tr>
<tr>
<td>GAT</td>
<td>General Air Traffic*</td>
</tr>
<tr>
<td>Hx</td>
<td>No specific working hours</td>
</tr>
<tr>
<td>HLPB</td>
<td>National High Level Airspace Policy Body</td>
</tr>
<tr>
<td>IATA</td>
<td>International Air Transport Association</td>
</tr>
<tr>
<td>IACA</td>
<td>International Air Carriers Association</td>
</tr>
<tr>
<td>IAOPA</td>
<td>International Council of Aircraft Owner and Pilot Associations</td>
</tr>
<tr>
<td>ICAO</td>
<td>International Civil Aviation Organisation</td>
</tr>
<tr>
<td>IFATCA</td>
<td>International Federation of Air Traffic Controllers’ Associations</td>
</tr>
<tr>
<td>IFPS</td>
<td>Integrated Initial Flight Plan Processing System*</td>
</tr>
<tr>
<td>IFR</td>
<td>Instrument Flight Rules</td>
</tr>
<tr>
<td>Acronym</td>
<td>Full Form</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>LoA</td>
<td>Letter of Agreement</td>
</tr>
<tr>
<td>MOD</td>
<td>Ministry of Defence</td>
</tr>
<tr>
<td>MOT</td>
<td>Ministry of Transport</td>
</tr>
<tr>
<td>NATO</td>
<td>North Atlantic Treaty Organisation</td>
</tr>
<tr>
<td>NAM</td>
<td>Non AMC-Manageable Area</td>
</tr>
<tr>
<td>NAS</td>
<td>National Airspace System</td>
</tr>
<tr>
<td>NETOPS Team</td>
<td>Network Operations Team</td>
</tr>
<tr>
<td>NM</td>
<td>Network Manager</td>
</tr>
<tr>
<td>NMD</td>
<td>Network Manager Directorate</td>
</tr>
<tr>
<td>NMC</td>
<td>Network Management Cell (NM)</td>
</tr>
<tr>
<td>NOP</td>
<td>Network Operations Portal</td>
</tr>
<tr>
<td>NOTAM</td>
<td>Notice to Airmen*</td>
</tr>
<tr>
<td>OAT</td>
<td>Operational Air Traffic*</td>
</tr>
<tr>
<td>OLDI</td>
<td>On-Line Data Interchange</td>
</tr>
<tr>
<td>OPSD</td>
<td>Operations Division (NM)</td>
</tr>
<tr>
<td>P</td>
<td>Prohibited Area</td>
</tr>
<tr>
<td>PBN</td>
<td>Performance Based Navigation</td>
</tr>
<tr>
<td>PCA</td>
<td>Prior Coordination Airspace*</td>
</tr>
<tr>
<td>PRISMIL</td>
<td>Pan-European Repository of Information Supporting Military</td>
</tr>
<tr>
<td>R</td>
<td>Restricted Area</td>
</tr>
<tr>
<td>RAD</td>
<td>Route Availability Document*</td>
</tr>
<tr>
<td>RCA</td>
<td>Reduced Coordination Airspace*</td>
</tr>
<tr>
<td>RDPS</td>
<td>Radar Data Processing System</td>
</tr>
<tr>
<td>RJC</td>
<td>Airspace Crossing Reject Message</td>
</tr>
<tr>
<td>RNAV</td>
<td>Area Navigation*</td>
</tr>
<tr>
<td>RNDSG</td>
<td>Route Network Development Sub-Group</td>
</tr>
<tr>
<td>RRN</td>
<td>Re-routeing Notification Message</td>
</tr>
<tr>
<td>RSA</td>
<td>Restricted Airspace</td>
</tr>
<tr>
<td>SAM</td>
<td>Slot Allocation Message</td>
</tr>
<tr>
<td>SAR</td>
<td>Search and Rescue</td>
</tr>
<tr>
<td>SCC</td>
<td>Single CDR Category environment</td>
</tr>
<tr>
<td>SID</td>
<td>Standard Instrument Departure*</td>
</tr>
<tr>
<td>SITA</td>
<td>Société Internationale de Télécommunications Aéronautiques</td>
</tr>
<tr>
<td>SLC</td>
<td>Slot Cancellation Message</td>
</tr>
<tr>
<td>SRM</td>
<td>Slot Revision Message</td>
</tr>
<tr>
<td>SSR</td>
<td>Secondary Surveillance Radar</td>
</tr>
<tr>
<td>STAR</td>
<td>Standard Instrument Arrival*</td>
</tr>
<tr>
<td>TAA</td>
<td>Temporary Airspace Allocation Process*</td>
</tr>
<tr>
<td>TACT</td>
<td>NM Tactical System</td>
</tr>
<tr>
<td>TMA</td>
<td>Terminal Control Area*</td>
</tr>
<tr>
<td>TRA</td>
<td>Temporary Reserved Area*</td>
</tr>
<tr>
<td>TSA</td>
<td>Temporary Segregated Area*</td>
</tr>
<tr>
<td>UAC</td>
<td>Upper Area Control Centre</td>
</tr>
<tr>
<td>UIR</td>
<td>Upper Flight Information Region</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>UTC</td>
<td>Coordinated Universal Time</td>
</tr>
<tr>
<td>UUP</td>
<td>Updated Airspace Use Plan</td>
</tr>
<tr>
<td>VFR</td>
<td>Visual Flight Rules</td>
</tr>
<tr>
<td>VMC</td>
<td>Visual Meteorological Conditions</td>
</tr>
<tr>
<td>WGS</td>
<td>World Geodetic Survey</td>
</tr>
<tr>
<td>XAP</td>
<td>Airspace Crossing Counter-Proposal Message</td>
</tr>
<tr>
<td>XCM</td>
<td>Airspace Crossing Cancellation Message</td>
</tr>
<tr>
<td>XIN</td>
<td>Airspace Crossing Intention Notification Message</td>
</tr>
<tr>
<td>XRQ</td>
<td>Airspace Crossing Request Message</td>
</tr>
</tbody>
</table>
EXPLANATION OF TERMS

The terms used in the ASM Handbook have the following meanings.
The ICAO definitions are identified with an (I) at the end of the text.

Some terms may have an explanatory note in italics.

A

Active Mode of Real Time Civil/Military Coordination is the communication mode in real time between civil and military units which results from an action by the controller(s).

It encompasses both "Verbal" coordination by speech only, and "Silent" coordination, the communication process by manual input only.

Ad hoc Structures refer to airspace structures, whether routes or areas, required to meet operational needs at shorter notice than ASM Level 1 process. The establishment of such ad hoc structure at ASM Level 2 or ASM Level 3 should follow the general design and safety management criteria.

Aerial Work is an aircraft operation in which an aircraft is used for specialised services such as agriculture, construction, photography, surveying, observation and patrol, search and rescue, aerial advertisement, etc.

Aeronautical Information Publication (AIP) is a publication issued by or with the authority of a State containing aeronautical information of a lasting character essential to air navigation.

Aeronautical Information Service (AIS) A service established within the defined area of coverage responsible for the provision of aeronautical information/data necessary for the safety, regularity and efficiency of air navigation.

Such information includes the availability of air navigation facilities and services and the procedures associated with them, and must be provided to flight operations personnel and services responsible for flight information service.

Aircraft Operating Agencies (AOs) are the person, organisation or enterprise engaged in, or offering to engage in, an aircraft operation.

In the context of the FUA Concept, "AOs" encompass all aircraft operations other than aerial work operations, that is to say commercial air transport operations and general aviation operations.

Airspace Configuration is a pre-defined and coordinated organisation of routes and their associated airspace structures, temporary airspace reservations and ATC sectorisation.

Airspace Data Repository provides an unified source of updated information about the past, present and future status of airspace, routes, sector capacities, airport capacities, runways in use, pre-determined ATFCM scenarios and their modus operandi to resolve problematic traffic areas, etc. for which a recognised authority has taken a decision in terms of implementation, allocation, activation, etc.

Airspace Management (ASM) is a planning function with the primary objective of maximising the utilisation of available airspace by dynamic time-sharing and, at times, the segregation of airspace among various categories of users based on short-term needs. In future systems, airspace management will also have a strategic function associated with infrastructure planning.

In the context of the FUA Concept, airspace management is a generic term covering any management activity at the three Strategic, Pre-tactical and Tactical Levels, provided for the
The purpose of achieving the most efficient use of airspace based on actual needs and, where possible, avoiding permanent airspace segregation.

Airspace Management Cell (AMC) is a joint civil/military cell responsible for the day-to-day management and temporary allocation of national or sub-regional airspace under the jurisdiction of one or more ECAC State(s).

Airspace Reservation is a defined volume of airspace temporarily reserved for exclusive or specific use by categories of users.

Airspace Restriction is a defined volume of airspace within which, variably, activities dangerous to the flight of aircraft may be conducted at specified times (a ‘danger area’); or such airspace situated above the land areas or territorial waters of a State, within which the flight of aircraft is restricted in accordance with certain specified conditions (a ‘restricted area’); or airspace situated above the land areas or territorial waters of a State, within which the flight of aircraft is prohibited (a ‘prohibited area’).

Airspace Structures are specific portions of airspace designed to accommodate the safe operation of aircraft.

In the context of the FUA Concept, “Airspace Structures” include Controlled Airspace, ATS Route, including CDRs, ATC Sectors, Danger Area (D), Restricted Area (R), Prohibited Area (P), Temporary Segregated Area (TSA), Temporary Reserved Area (TRA), Cross-Border Area (CBA)…

Airspace Use Plan (AUP) is an ASM message of NOTAM status notifying the daily decision of an Airspace Management Cell on the temporary allocation of the airspace within its jurisdiction for a specific time period, by means of a standard message format.

Air Traffic encompasses all aircraft in flight or operating on the manoeuvring area of an aerodrome. (I)

Air Traffic Control Clearance is an authorisation for an aircraft to proceed under conditions specified by an Air Traffic Control unit. (I)

For convenience, the term “Air Traffic Control Clearance” is frequently abbreviated to “ATC Clearance” or “Clearance” when used in appropriate contexts. (I)

The abbreviated term “Clearance” may be prefixed by the words “taxi”, “take-off”, “departure”, “en-route”, “approach” or “landing” to indicate the particular portion of flight to which the Air Traffic Control Clearance relates. (I)

Air Traffic Control Service is a service provided for the purpose of:

a) preventing collisions:
 1) between aircraft, and
 2) on the manoeuvring area between aircraft and obstructions, and

b) expediting and maintaining an orderly flow of air traffic. (I)

Air Traffic Flow and [Capacity] Management (ATFCM) is a service established with the objective of contributing to a safe, orderly and expeditious flow of air traffic by ensuring that ATC capacity is utilised to the maximum extent possible, and that the traffic volume is compatible with the capacities declared by the appropriate ATS authority.

Note: The above-mentioned is the ICAO definition of the ATFM. ATFCM is EUROCONTROL term that includes process that ensures better realisation of the ATM capacity towards the traffic demand.

Air Traffic Flow Management Notification Message (ANM) is the official medium for the notification of ATFCM measures. It is produced by the NM the day before the day of operation to provide a summary of planned ATFCM measures and to promulgate any specific instructions or communications requirements associated with those measures.
Air Traffic Management (ATM) is the dynamic, integrated management of air traffic and airspace including air traffic services, airspace management and air traffic flow management - safely, economically and efficiently - through the provision of facilities and seamless services in collaboration with all parties and involving airborne and ground-based functions. (I)

The general objective of ATM is to enable aircraft operators to meet their planned departure and arrival times and to adhere to their preferred flight profiles with the minimum constraints, without compromising agreed levels of safety.

Air Traffic Services (ATS) is a generic term meaning variously, Flight Information Service, Alerting Service, Air Traffic Advisory Service, Air Traffic Control Service (Area Control Service, Approach Control Service or Aerodrome Control Service). (I)

Air Traffic Services Unit (ATSU) is a generic term meaning variously, air traffic control unit, flight information centre or air traffic services reporting office. (I)

Airway (AWY) is a control area or portion thereof established in the form of a corridor. (I)

AMC-Manageable Area is an area subject to management and allocation by an AMC at ASM Level 2. Under the TAA Process, these manageable areas are either formal structures entitled “TRAs or TSAs” or R and D Areas that are manageable at ASM Level 2 in the same way as TRA/TSAs.

AMC-AUP contingency template is a template AUP established and maintained under the responsibility of the State/AMC and provided in advance to NM/CADF for implementation in specific cases where the nominal AUP procedure cannot be followed.

Approved Agencies (AAs) are units, which are authorised by a State to deal with an Airspace Management Cell for airspace allocation and utilisation matters.

Area Control Centre (ACC) is a unit established to provide air traffic control service to controlled flights in control areas under its jurisdiction. (I)

Area Navigation (RNAV) is a method of navigation which permits aircraft operation on any desired flight path within the coverage of station-referenced navigation aids or within the limits of the capability of self-contained aids, or a combination of these. (I)

ATC Clearance (see Air Traffic Control Clearance)

ATC Coordination is the process of communication between ATC units, or controllers within such units, of the necessary flight plan data, radar data and control information with a view to reaching an agreed course of action as the controlled flight(s) progress(es).

ATC Instructions are directives issued by air traffic control for the purpose of requiring a pilot to take a specific action. (I)

ATC Unit is a generic term meaning variously, area control centre, approach control office or aerodrome control tower. (I)

ATS Unit is a generic term meaning variously, air traffic control unit, flight information centre or air traffic services reporting office.

ATS Airspaces are airspaces of defined dimensions, alphabetically designated, within which specific types of flights may operate and for which air traffic services and rules of operation are specified. (I) ATS airspaces are classified as Class A to G (I).

ATS Reporting Office (ARO) is a unit established for the purpose of receiving reports concerning air traffic services and flight plans submitted before departure. (I)

ATS Route is a specified route designed for channelling the flow of traffic as necessary for the provision of air traffic services. (I)
In the context of the FUA Concept, the term "ATS route" is used to mean variously Upper Air Route, Airway, Advisory Route, Standard Instrument Departure or Standard Arrival Route, RNAV Route, Permanent Route and Conditional Route.

B

B2B is Business to Business; means that the services are offered via a programmatic interface; this implies that the customer has to develop software that uses that interface in order to access our services; this is the case of the NOP B2B web services.

B2C is Business to Client; means that the services (the business) are offered via client interface that are property of the NM (CHMI, Portal); this implies that the customer does not need to develop any software to access the offered services.

C

Centralised Airspace Data Function (CADF) is an ASM function entrusted to the NM by the ECAC States for consolidating national AUPs/UUPs to be published on the NOP Portal as EAUP and EUUP.

Changed Airspace Restriction (CAR) concerns any Danger or Restricted Area not suitable for Pre-Tactical management, but for which a change in its use, either in time or size, could be notified to AMC the day before activity for publication in the List "DELTA" of AUP/UUP.

Civil/Military Coordination is the communication between civil and military elements (human and/or technical) necessary to ensure safe, efficient and harmonious use of the airspace.

Clearance (see Air Traffic Control Clearance) (I)

Cleared Flight Level (CFL) is the flight level at or to which an aircraft is authorised to proceed under conditions specified by an ATC unit.

Conditional Route (CDR) is an ATS route that is only available for flight planning and use under specified conditions.

A Conditional Route may have more than one category, and those categories may change at specified times:

a) Category One - Permanently Plannable CDR:

CDR1 routes are in general available for flight planning during times published in the relevant national Aeronautical Information Publication (AIP). Updated information on the actual availability shall be in accordance with conditions published daily in EAUP/EUUPs

b) Category Two - Non-Permanently Plannable CDR:

CDR2 routes may be available for flight planning. Flights may only be planned on a CDR2 in accordance with conditions published daily in the EAUP/EUUPs, and

c) Category Three - Not Plannable CDR:

CDR3 routes are not available for flight planning; however, ATC Units may issue tactical clearances on such route segments.

Control Area (CTA) is a controlled airspace extending upwards from a specified limit above the earth. (I)

Control Zone (CTR) is a controlled airspace extending upwards from the surface of the earth to a specified upper limit. (I)

Controlled Airspace is airspace of defined dimensions within which air traffic control services are provided to IFR flights and to VFR flights in accordance with the airspace classification. (I)

Controlled Airspace is a generic term, which covers ATS airspace classes A, B, C, D & E.
Controlled Airspace includes Control Area (CTA), Terminal Control Area (TMA), Airway (AWY) and Control Zone (CTR).

Controlled Flight is any flight, which is subject to an ATC clearance. (I)

Controller’s Intentions are updated flight data, which shall be exchanged, as laid down in LoAs, either simultaneously with or before, the corresponding ATC clearance is issued.

Controlling Military Unit (CMU) means any fixed or mobile military unit handling military air traffic and/or pursuing other activities which, owing to their specific nature, may require an airspace reservation or restriction.

Cross-Border Area (CBA) is an airspace restriction or reservation established over international borders for specific operational requirements. This may take the form of a Temporary Segregated Area or Temporary Reserved Area.

Current Flight Plan (CPL) is the flight plan, including changes, if any, brought about by subsequent clearances. (I)

When the word “message” is used as a suffix to this term, it denotes the content and format of the current flight plan data sent from one unit to another. (I)

Danger Area (D) is an airspace of defined dimensions within which activities dangerous to the flight of aircraft may exist at specified times. (I)

In the context of the FUA Concept, some Danger Areas subject to management and allocation at ASM Level 2 are established at ASM Level 1 as “AMC-Manageable Areas” and identified as such in AIP.

Directorate Network Management is a Eurocontrol Directorate nominated by the EC as European Network Manager to perform the network functions under the conditions defined in regulation (EU) 677/2011 (the ATM Network Functions regulation).

eAMI or electronic ASM Information is an electronic message containing all airspace allocations (ASM Level 1 and ASM Level 2) and the derived availabilities/non-availabilities opening/closure of CDR2/CDR1/ATS routes published daily in EAUP/EUUPs.

European Route Network Improvement Plan (ERNIP) means the plan developed by the Network Manager in coordination with the operational stakeholders that includes the result of its operational activities with respect to route network design on short and medium terms in accordance with the guiding principles of the Network Strategy Plan.

Filed Flight Plan (FPL) is the flight plan as filed with an ATS unit by the pilot or a designated representative, without any subsequent changes. (I)

When the word “message” is used as a suffix to this term, it denotes the content and format of the filed flight plan data as transmitted. (I)

Flexible Use of Airspace (FUA) Concept is based on the fundamental principle that airspace should not be designated as either pure civil or military airspace, but rather be considered as one continuum in which all user requirements have to be accommodated to the extent possible.

Flight Data Operation Division (FDOD) is the NM unit responsible for the collection, updating, processing and dissemination of data on flight operations and on the air navigation infrastructure. This includes the running of, amongst other systems, the Integrated Initial Flight Plan Processing System (IFPS) and the Environment Data Base.
Flight Information Region (FIR) is an airspace of defined dimensions within which flight information service and alerting service are provided. (I)

Flight Management System (FMS) is an integrated system, consisting of airborne sensor, receiver and computer with both navigation and aircraft performance data bases, which provides performance and RNAV guidance to a display and automatic flight control system.

Flight Plan contains specified information provided to air traffic services units, relative to an intended flight or portion of a flight of an aircraft. (I)

Flow Management Division (FMD) is the NM unit responsible for the planning, coordination and execution of the Strategic, Pre-Tactical and Tactical Air Traffic Flow and Capacity Management.

Flow Management Position (FMP) is a working position established within an ACC to ensure the necessary interface with the NM on matters concerning the provision of the ATFCM Service and the interface with national AMCs on matters concerning the ASM Service.

FPL Buffer Zone (FBZ) is the associated airspace which may be applied to a reserved/restricted airspace. The FBZ defines the lateral and vertical limits for the purpose of submitting a valid IFR FPL when such areas are active or planned to be active.

Free Route Operations Airspace (FRA) A specified airspace within which users may freely plan a route between a defined entry point and a defined exit point, with the possibility to route via intermediate (published or unpublished) way points, without reference to the ATS route network, subject to airspace availability. Within this airspace, flights remain subject to air traffic control.

FUA Restriction is the restriction introduced in the CACD database in order to manage the acceptance of FPLs through the related restricted/reserved area. With the activation of the FUA restriction, all the FPL passing through the related restricted/reserved area will be rejected, unless related to any inclusions and exclusions defined in the restriction. The activation of the FUA restriction will be triggered by the allocation of the associated reserved/restricted area through AUP/UUP.

FUA Temporary Instruction (FTI) is a temporary instruction published by the NM and agreed/applied by appropriate AMCs and the NM/CADF for all or for a part, of the FUA area.

G

General Air Traffic (GAT) encompasses all flights conducted in accordance with the rules and procedures of ICAO and/or the national civil aviation regulations and legislation.

GAT can include military flights for which ICAO rules and procedures satisfy entirely their operational requirements.

General Aviation encompasses an aircraft operation other than a commercial air transport operation or an aerial work operation. (I)

I

Integrated Initial Flight Plan Processing System (IFPS) is the NM system receiving and processing the GAT IFR flight plan data and associated update messages for the area covered by the participating States. It subsequently distributes these messages in a format, which can be received and processed automatically by ATC Flight Plan Processing Systems (FPPS). The IFPS is installed at two geographical sites (Brussels and Bretigny).

K

Known Traffic Environment (KTE) is the environment within which all traffic is known to ATS.
Level 1 - **Strategic ASM** is the act of defining and reviewing, as required, the national airspace policy taking into account national and international airspace requirements.

Level 2 - **Pre-Tactical ASM** is the act of conducting operational management within the framework of pre-determined existing ATM structure and procedures defined in ASM Level 1 and of reaching specific agreement between civil and military authorities involved.

Level 3 - **Tactical ASM** is the act, on the day of operation, of activating, deactivating or real time reallocating of airspace allocated in ASM Level 2, and of solving specific airspace problems and/or of individual OAT/GAT traffic situations in real time between civil and military ATS units and/or controlling military units and/or controllers, as appropriate. This coordination can take place either in active or passive mode with or without action by the controller.

Manoeuvring Area is that part of an aerodrome to be used for the take-off, landing and taxiing of aircraft, excluding aprons. (I)

NM Environment Data Base is a specific part of the NM Data Base containing all environment data concerning airspace organisation and structure, ACC operational organisation and ATC capacities. The Environment Data Base is used by the NM systems for the calculation of flight profiles taking account of all airspace constraints.

Network Manager means the entity established under Article 6 of regulation (EC) No 551/2004 (the Airspace regulation) to perform the duties provided for in that article and in regulation (EU) 677/2011 (the ATM Network Functions regulation).

Network Manager Operation Centre (NMOC) is a EUROCONTROL Sub-Division being the operational component of the Network Management Directorate, established in accordance with the ICAO Centralised ATFCM Organisation to provide the ATFCM Service, on behalf of the participant States, in a specified part of the EUR Region. The NMOC comprises among others the Network Management Cell (NMC) and the Integrated Initial Flight Plan Processing System (IFPS). For ASM purposes, the NMOC is also entrusted with the Centralised Airspace Data Function (CADF).

Network Operation Plan means the plan developed by the Network Manager in coordination with the operational stakeholders to organise its operational activities in the short and medium term in accordance with the guiding principles of the Network Strategic Plan. For the European route network design (ERND) specific part of the Network Operation Plan, it includes the European Route Network Improvement Plan (ERNIP).

Network Strategy Plan means the plan developed by the Network Manager, consistent with the European ATM Master Plan, in coordination with member States and the operational stakeholders defining the guiding principles for the network operation and its long term perspective.

Notice to Airmen (NOTAM) is a notice distributed by means of telecommunication containing information concerning the establishment, condition or change in any aeronautical facility, service, procedure or hazard, the timely knowledge of which is essential to personnel concerned with flight operations. (I)
Off-Route Traffic encompasses all GAT flying outside the published ATS Routes Network.

On-Route Traffic encompasses all GAT flying along the published ATS Routes Network.

Operational Air Traffic (OAT) encompasses all flights which do not comply with the provisions stated for GAT and for which rules and procedures have been specified by appropriate national authorities.

OAT can include civil flights such as test-flights, which require some deviation from ICAO rules to satisfy their operational requirements.

Operations Division (OPSD) is the NM unit responsible for the planning, coordination and execution of the Strategic, Pre-Tactical and Tactical Air Traffic Flow and Capacity Management as well as for the collection, updating, processing and dissemination of data on flight operations and on the air navigation infrastructure. This includes the running of, amongst other systems, the Integrated Initial Flight Plan Processing System and the Environment Database.

Passive Mode of Real Time Civil/Military Coordination is the system-supported communication mode of information in real time between civil and military units without any action by the controller(s).

Permanent ATS Route is a permanently designated ATS route which is not subject to daily management at ASM Level 2 by AMCs.

Pre-Tactical Civil/Military Coordination - (see definition of ASM Level 2 - Pre-Tactical ASM).

Prior Coordination Airspace (PCA) is a portion of airspace of defined dimensions within which individual GAT is permitted to fly "off-route" only after prior coordination initiated by controllers of GAT flights with controllers of OAT flights.

Prohibited Area (P) is airspace of defined dimensions, above the land areas or territorial waters of a State, within which the flight of aircraft is prohibited. (I)

Real-Time Civil/Military Coordination - (see definition of ASM Level 3 - Tactical ASM).

Reduced Coordination Airspace (RCA) is a portion of airspace of defined dimensions within which GAT is permitted to fly "off-route" without requiring controllers of GAT flights to initiate coordination with controllers of OAT flights.

Restricted Airspace (RSA) is the generic term used to define any type of restricted/reserved areas uploaded in the CACD and managed by NM systems. AMC/CADF Operations manual provides more information and operational instructions (chapter 4) for the RSA management.

Restricted Area (R) is airspace of defined dimensions, above the land areas or territorial waters of a State, within which the flight of aircraft is restricted in accordance with certain specified conditions. (I)

In the context of the FUA Concept, some Restricted Areas are subject to management and allocation at ASM Level 2 are established at ASM Level 1 as “AMC-Manageable Areas” and identified as such in AIP.

Route Availability Document (RAD) is a strategically planned routeing system for the NM area agreed at the annual meeting. The RAD is designed as a part of the NM ATFCM operation to make the most effective use of ATC capacity while allowing aircraft operators’ flight
planning flexibility. The RAD enables ATC to maximise capacity by defining routeings that provide an organised system of major traffic flows through congested areas and reduce the crossing of major flows at critical points

\section*{S}

\textbf{Silent Coordination} \hspace{1em} \textit{(see definition of Active Mode of Real Time Coordination)}

\textbf{Single CDR Category (SCC)} is an environment where only CDR1 is used and CDR 2 and CDR3 are not used anymore.

\textbf{Standard Instrument Arrival (STAR)} is a designated instrument flight rule (IFR) arrival route linking a significant point, normally on an ATS route, with a point from which a published instrument approach procedure can be commenced. (I)

\textbf{Standard Instrument Departure (SID)} is a designated instrument flight rule (IFR) departure route linking the aerodrome or a specified runway of the aerodrome with a specified significant point, normally on a designated ATS route, at which the en-route phase of a flight commences. (I)

\textbf{Strategic Civil/Military Coordination} - \textit{(see definition of ASM Level 1 - Strategic ASM)}.

\section*{T}

\textbf{Tactical Civil/Military Coordination} - \textit{(see definition of ASM Level 3 - Tactical ASM)}.

\textbf{Temporary Airspace Allocation Process} consists in the allocation process of airspace of defined dimensions assigned for the temporary reservation/segregation (TRA/TSA) or restriction (D/R) and identified more generally as an "AMC-manageable" area.

\textbf{Temporary Reserved Area (TRA)} is a defined volume of airspace normally under the jurisdiction of one aviation authority and temporarily reserved, by common agreement, for the specific use by another aviation authority and through which other traffic may be allowed to transit, under ATC clearance.

\textit{In the context of the FUA Concept, all TRAs are airspace reservations subject to management and allocation at ASM Level 2.}

\textbf{Temporary Segregated Area (TSA)} is a defined volume of airspace normally under the jurisdiction of one aviation authority and temporarily segregated, by common agreement, for the exclusive use by another aviation authority and through which other traffic will not be allowed to transit.

\textit{In the context of the FUA Concept, all TSAs are airspace reservations subject to management and allocation at ASM Level 2.}

\textbf{Terminal Airspace} is a generic term encompassing Terminal Control Area (TMA), Control Area (CTA), Control Zone (CTR), Special Rules Zone (SRZ), Aerodrome Traffic Zone (ATZ), or any other nomenclature, such as Traffic Information Area (TIA) or Traffic Information Zone (TIZ), used to describe the airspace around an airport.

\textbf{Terminal Control Area (TMA)} is a control area normally established at the confluence of ATS routes in the vicinity of one or more major aerodromes. (I)

\section*{U}

\textbf{Unknown Traffic Environment (UTE)} is the environment within which not all traffic is known to ATS.

\textbf{Updated Airspace Use Plan (UUP)} is an ASM message of NOTAM status issued by an AMC to update and supersede AUP/previous UUP information.

\section*{V}

\textbf{Verbal Coordination} \hspace{1em} \textit{(see definition of Active Mode of Real Time Coordination)}
This page intentionally left blank
SECTION 1

INTRODUCTION

1.1 INTRODUCTION TO THE ASM HANDBOOK

1.1.1 Purpose

The purpose of the ASM Handbook is to provide additional descriptions of the ASM functions and Air Traffic Management (ATM) related processes and procedures, complementary to the provisions of the EUROCONTROL Specification for the Application of the Flexible Use of Airspace (FUA), that are required to apply and exploit the Flexible Use of Airspace Concept.

1.1.2 Status

The ASM Handbook should be regarded as a set of actions intended as guidelines and best practices to support the harmonisation of flexible ASM throughout the ECAC area. It should not be considered as a substitute for official national regulations in individual ECAC States or for the ASM Part of the ICAO European Region Air Navigation Plan.

1.1.3 Scope

The ASM Handbook complements the EUROCONTROL Strategies and Specifications insofar as they relate to or have an influence on the flexible use of airspace. It describes the FUA concept and structure, providing guidance material in the form of processes, procedures and best practice in order to assist States in their organisation and operation of the Flexible Use of Airspace throughout the ECAC area.

1.1.4 Relationship with the EUROCONTROL Specification for the Application of the Flexible Use of Airspace (FUA)

EUROCONTROL Specification for the Application of the Flexible Use of Airspace (FUA) (EUROCONTROL Document: EUROCONTROL-SPEC-0112; 10 January 2009) provides details of procedures and requirements for the implementation and application of the Flexible Use of Airspace Concept and also facilitates implementation matters regarding operational coordination between civil and military ATM partners.

EUROCONTROL Guidelines for Airspace Management - The ASM Handbook - is intended to serve as the reference guidance material to the elements contained in the EUROCONTROL Specification for the application of the Flexible Use of Airspace (FUA). Its structure and content relates to this role. It does not repeat the content of the EUROCONTROL Specification for the application of the Flexible Use of Airspace (FUA) but provides additional guidance to ASM working arrangements, processes and procedures.

1.1.5 Applicability

The ASM Handbook is applicable to those civil and military entities responsible for and/or involved in air traffic management that operate in the airspace under the responsibility of ECAC Member States.
1.1.6 **Conventions**

The conventions used the ASM Handbook are:

- **“Should”** - indicates a recommendation or best practice, which may or may not be satisfied by all systems claiming conformity to the FUA specification;
- **“May”** - indicates an optional element.

1.2 **BACKGROUND**

1.2.1 **ASM Objective**

1.2.1.1 The objective of ASM is to achieve the most efficient use of the airspace based on actual needs and, where possible, to avoid permanent airspace segregation while optimizing the network performance.

1.2.2 **Introduction of the FUA Concept**

1.2.2.1 The ECAC States’ representatives and the European Organisation for the Safety of Air Navigation (EUROCONTROL) developed, in the Airspace & Navigation Team (ANT), three documents to assist with the Implementation and the Application of the FUA Concept:

- a) The “ANT Report on Organisational Structures and Procedures Required for the Application of the Concept of the Flexible Use of Airspace”;
- b) The “Guidance Document for the Implementation of the FUA Concept” which provide the necessary information to plan for the implementation of the Concept;
- c) The “EUROCONTROL Guidelines - Airspace Management Handbook for the Application of the Concept of the Flexible Use of Airspace” which is designed to assist the application of the FUA Concept in the ECAC States.

1.2.2.2 The ANT Report on the Organisational Structures and Procedures Required for the Application of the Concept of the Flexible Use of Airspace, [EUROCONTROL Doc. 94. 70. 08] published in March 1994, was adopted by the 4th Meeting of the ECAC Ministers of Transport (MATSE/4) on the 10th June 1994. The ANT Report made 18 specific recommendations which were developed and formed the basis of the Guidance Document for the Implementation of the Concept and the First Edition of the ASM Handbook for the Application of the Concept.
1.3 STRUCTURE OF THE HANDBOOK

1.3.1 The ASM Handbook consists of 7 sections preceded by the Record of Amendments, a Checklist, the Foreword, a Table of Contents, Abbreviations and an Explanation of Terms.

Section 1 contains an Introduction, relationship with documents and historical background.

Section 2 contains a brief overview of the FUA concept, describes the flexible airspace structures and procedures, explains the relationship between the FUA concept and existing airspace structures, and the relationship between the components of the Air Traffic Management (ATM).

Section 3 explains in detail how the ASM functions have to be applied at the Strategic - ASM Level 1 to develop, approve and enforce common national policies through National and International Collaborative Airspace Planning.

Section 4 explains in detail how the ASM functions have to be applied at the Pre-Tactical - ASM Level 2 to fully exploit the FUA concept.

Section 5 explains in detail how the ASM functions have to be applied at the Tactical - ASM Level 3 to fully exploit the FUA concept.

Section 6 summarises the various methods for the publication of ASM information in support of the FUA concept at the three levels.

Section 7 explains the methods used to evaluate the effectiveness of the current application of the FUA concept (FUA indicators etc.).

Bibliography of reference documents is also presented prior to the Annexes to provide more detailed information on the implementation of the FUA concept.

Annexes
SECTION 2

THE CONCEPT OF FLEXIBLE USE OF AIRSPACE

2.1. GENERAL INTRODUCTION

2.1.1. The Basis of the FUA Concept

2.1.1.1. The basis for the FUA concept is that airspace should no longer be designated as either military or civil airspace but should be considered as one continuum and used flexibly on a day-to-day basis. Consequently, any necessary airspace segregation should be of a temporary nature.

2.1.1.2. One of the major objectives is the more efficient use of airspace by civil and military users through the implementation of the FUA concept. Airspace Management Cells (AMCs) will ensure that there is a more effective sharing of ECAC airspace through joint civil/military strategic planning and pre-tactical airspace allocation.

2.1.1.3. The FUA concept has increased the flexibility of airspace use and has provided ATM with the potential to increase the air traffic system performance. It allows the maximum common use of airspace by appropriate coordination between civil and/or military users.

2.1.1.4. The application of the FUA concept ensures that, through the daily allocation of flexible airspace structures, any necessary segregation of airspace is based on real usage within a specific time period and airspace volume (See Figure 1).
2.1.1.5. FUA concept is also applicable to enhancing airspace usage based on any temporary airspace structures as a function of achieving increased airspace capacity and flight efficiency.

2.1.1.6. The application of the FUA concept aims at:
 a) implementation of the most optimal airspace configuration to accommodate civil and military airspace requirements;
 b) an increase of flight efficiency by a reduction in distance, time and fuel thereby providing environmental benefits;
 c) the establishment of an enhanced Air Traffic Services (ATS) route network and associated sectorisation providing for capacity increase;
d) improving the efficient use of airspace in Free Route Operations Airspace (FRA);
e) more efficient ways to separate Operational and General Air Traffic where required;
f) enhanced real time civil/military coordination;
g) a reduction of ATC workload;
h) a reduction in airspace segregation/reservation needs to better reflect actual military requirements;
i) a potential increase in mission effectiveness.

2.1.2. Application of the FUA concept

2.1.2.1. Effective application of the FUA concept requires the establishment of a national High-Level Airspace Policy Body (HLAPB) in each of the ECAC States. This body is tasked with the continuous reassessment of national airspace, the progressive establishment of new flexible airspace structures and the introduction of procedures for the allocation of these airspace structures on a day by day basis. The States are required to establish adequate real time civil/military coordination facilities and procedures so as to fully exploit the FUA concept. The practical application of the FUA concept relies on National or sub-regional Airspace Management Cells (AMCs) for the daily allocation and promulgation of flexible airspace structures and on the Centralised Airspace Data Function (CADF) within the Network Manager (NM). NM is in charge for the dissemination of the daily availability of non-permanent ATS routes and daily allocation of areas, including associated information (e.g. restrictions, mandatory intermediate points, etc.) for FPL purposes, particularly relevant in the Free Route Operations Airspace.

2.2 THE THREE ASM LEVELS

2.2.1 Introduction

2.2.1.1 The FUA Concept is based on three Levels of ASM which have been identified as:
 a) Strategic ASM - ASM Level 1,
 b) Pre-Tactical ASM - ASM Level 2, and
 c) Tactical ASM - ASM Level 3.

2.2.1.2 The three ASM Levels correspond with civil/military ATM coordination tasks. Each Level is related directly to, and impacts on, the others. The following paragraphs describe the FUA concept of operation at the three ASM Levels.

2.2.2 ASM Level 1 - National and International Airspace Policy

2.2.2.1 Strategic ASM at ASM Level 1 consists of a joint civil and military process within a national\(^1\) HLAPB, which formulates the national ASM policy and carries out the necessary strategic planning work, taking into account national and international airspace users’ requirements.

2.2.2.2 In order to maintain a flexible airspace organisation, ECAC States continually assess their national airspace, Free Route Operations Airspace and route structures. At ASM Level 1, the States determine the working structures for ASM Levels 2 and 3, and give them the authority required to carry out their tasks. The States lay down the procedures to be followed at these tactical and pre-tactical levels and agree on priority rules and negotiation procedures for airspace allocation at ASM Levels 2 and 3.

\(^1\) HLAPB can be established at sub-regional level as appropriate (e.g. FAB)
2.2.3 ASM Level 2 - Day-to-Day Allocation of Airspace

2.2.3.1 Pre-Tactical - ASM Level 2 consists of the day-to-day management and temporary allocation of airspace through national or sub-regional AMCs and in coordination with the NM. It can start at D-6 and carries on the Day of Operations with updates of the airspace plans.

2.2.3.2 AMCs are joint civil/military ASM focal-points which have the authority to conduct ASM within the framework of the States airspace structures, priority rules and negotiation procedures as laid down by the national HLAPB. From D-6 to D-2, AMCs collect available information and publish DRAFT AUPs as far as required. At D-1, after coordination as described in 4.8.2, AMCs promulgate the airspace allocation as an Airspace Use Plan (AUP). Changes to the airspace plan are notified via UUPs as described in 4.8.3 and 4.8.5.

2.2.3.3 The available information notified with DRAFT AUPs from D-6 to D-2 is published on the NOP Portal. Information notified via AUP at D-1 and any UUPs afterwards are consolidated in EAUP/EUUP, daily published on the NOP Portal and used via B2B service to provide information to Aircraft Operators (AOs) for flight planning purposes.

2.2.4 ASM Level 3 - Real Time Use of Airspace

2.2.4.1 Tactical - ASM Level 3 consists of the real time activation, deactivation or real time reallocation of the airspace allocated at ASM Level 2 and the resolution of specific airspace problems and/or traffic situations between civil and military ATS units and/or controlling military units and/or controllers, as appropriate. Real time access to all necessary flight data, including controllers’ intentions, with or without system support, permits the optimised use of airspace and reduces the need to segregate airspace (see Figure 1).

2.3. FLEXIBLE AIRSPACE STRUCTURES AND PROCEDURES

2.3.1. General

2.3.1.1. The FUA concept uses airspace structures and procedures that are particularly suited for temporary allocation and/or utilisation, such as Conditional Routes (CDRs), Temporary Reserved Areas (TRAs), Temporary Segregated areas (TSAs), Cross-Border Areas (CBAs), Reduced Coordination Airspace (RCA) and Prior Coordination Airspace (PCA). In order to improve the airspace utilisation both in a fixed route network and a free route environment, these airspace structures will be implemented according to the specific requirements.

2.3.1.2. The use of these airspace structures is enabled through specific processes and procedures described hereafter.

2.3.2. Conditional Routes

2.3.2.1. A Conditional Route (CDR) is an ATS route or a portion thereof which can be planned and/or used under certain specified conditions only. CDRs permit the definition of more direct and alternative routes by complementing and linking to the existing ATS route network.

2.3.2.2. CDRs can be established at ASM Level 1:

- through areas of potential temporary reservations (e.g. TRA or TSA), with opening/closure conditions resulting from associated military activities; and/or
- to address specific ATC conditions (e.g. traffic restrictions or ATC sectorisation compatibility) with opening/closure conditions resulting from purely civil needs.
2.3.2.3. The properties of CDRs, including their categories, alignment and route designator, are published in national Aeronautical Information Publications (AIPs).

2.3.2.4. CDRs are divided into different categories according to their estimated availability and flight planning possibilities. A CDR can be established at ASM Level 1 in one or more of the three following categories, but when States have implemented the single CDR category environment, only the CDR1 will be used:

2.3.2.4.1. CATEGORY ONE (CDR1) - Plannable CDR

2.3.2.4.1.1. CDRs1 are available for flight planning during times published in the relevant national AIP.

2.3.2.4.1.2. CDRs1 are plannable for stated time periods and so published in AIPs. CDRs1 can either be established on an H 24 basis or for fixed time periods or at fixed flight level bands. CDRs1 should be coordinated with neighbouring States to the maximum extent possible in order to create consistent segments of CDR across borders.

2.3.2.4.1.3. The unavailability of a CDR1 (or any portion thereof) for flight plan purpose, shall be published via AUP/UUP and promulgated via EAUP/EUUP. It remains a State responsibility to decide whether an AIS notification (e.g. NOTAM) is required as additional publication. In case an additional AIS notification is published, States are responsible for ensuring consistency between relevant publications (e.g. NOTAM and AUP/UUP information). Any unavailability of a CDR1 not affecting flight planning can be treated tactically when appropriate. Even in case of notified unavailability of CDR1 for flight planning, tactical utilisation may be granted based on defined tactical coordination procedures between responsible ATS and/or controlling military units, whenever applicable.

2.3.2.4.2. CATEGORY TWO (CDR2) - Non-Permanently Plannable CDR

2.3.2.4.2.1. CDRs2 remain only in airspace where the SCC has not been yet implemented.

2.3.2.4.2.2. CDRs2 may be available for flight planning. Flights may only be planned on a CDR2 in accordance with conditions published daily in the EAUP/EUUP.

2.3.2.4.2.3. CDRs2 form part of predefined routeing scenarios depending on the allocation of associated AMC-Manageable Areas or for addressing specific ATC conditions.

2.3.2.4.2.4. CDRs2 availability can be requested to adjust traffic flow, when a capacity shortfall has been identified and after consideration of relevant ATC factors by the Flow Management Positions (FMPs)/ACCs concerned.

2.3.2.4.2.5. CDR2 when not available according to EAUP/EUUP publication may also be managed tactically, whenever conditions allow short-notice usage, subject to preventive coordination between responsible ATS and/or controlling military units.

2.3.2.4.3. CATEGORY THREE (CDR3) - Not Plannable CDR

2.3.2.4.3.1. CDRs3 remain only in airspace where the SCC has not been yet implemented.

2.3.2.4.3.2. CDRs3 are not available for flight planning. Flights must not be planned on these routes but ATC units may issue tactical clearances on such route segments, when made available.
2.3.2.4.3.3. CDRs3 are those CDRs that are expected to be available at short notice when the pre-notified activity in the associated AMC-Manageable Areas has ceased, or for addressing specific ATC conditions.

2.3.2.4.3.4. After coordination with the ATS or controlling military unit(s) in charge of the associated AMC-Manageable Area(s), the responsible controller may offer an aircraft a short-notice routing through the area using a predefined CDR3.

2.3.2.4.3.5. CDRs3 are published in AIPs as CDRs usable on ATC instructions only and are not subject to allocation the day before by AMCs.

2.3.2.5. Until Free Route Airspace is fully implemented, the Single CDR Category environment should be used.

Note: When all existing CDRs2 and CDRs3 are removed from AIPs, they will also be removed from the FUA concept and from the present document.

2.3.3. Temporary Airspace Restriction and Reservation

2.3.3.1. The Temporary Airspace Allocation (TAA) process consists in the allocation process of airspace of defined dimensions assigned for the temporary reservation/segregation (TRA/TSA) or restriction (D/R) and identified more generally as an "AMC-manageable" area.

2.3.3.2. Two different types of airspace reservation can be established taking into consideration the activity that would take place associated with the transit possibility:

- Temporary Reserved Area (TRA);
- Temporary Segregated Area (TSA).

Note: In the context of the FUA Concept, all TRAs and TSAs are airspace reservations subject to management and allocation at ASM Level 2.

2.3.3.3. The TAA Process gives States considerable flexibility in the use of airspace. TRAs/TSAs are established at ASM Level 1, allocated (by AMCs) at ASM Level 2 in response to daily requests for specific periods, and activated at ASM Level 3 for periods corresponding as closely as possible to the real time civil or military airspace users’ requirement. In order to conduct several activities in the area, the TRA and TSA may be subdivided at ASM Level 1 and published as such in the AIP. The activation/de-activation process of the subdivided areas allows for the accommodation of daily changes in traffic situations and airspace users’ requirements.

2.3.3.4. TRAs/TSAs are established in response to the need for civil, military, R&D, training, test-flights or activities of a temporary nature. TRAs/TSAs are established in accordance with national policy and allocated by AMCs for specific activities. If, due to the nature of these activities, segregation is needed to protect participating and non-participating traffic, only TSA applies. In these cases, any tactical crossing of the areas when activated should not be allowed.

2.3.3.5. Whenever an area is planned to be used for activities not always requiring a segregation to protect not-participating aircraft, it should be designated as TRA. In this way it would be possible to improve the flexibility in the usage, allowing tactical crossing when the activity inside doesn’t require a protection of not-participating traffic.

2.3.3.6. In addition, TRAs/TSAs, as AMC-manageable parts of the airspace structures, supplement, replace or modify, where possible, existing airspace structures such as
Danger (D) or Restricted (R) areas. However, in some situations, for example in airspace over the high seas, or because of difficulty in the notification of airspace status to airspace users in some ATS classes of airspace, or because of national legal requirements, States may have a continuing requirement to retain D and R areas.

2.3.3.7 Active airspace reservations are crossed or avoided depending on the level of coordination (including civil/military coordination) and the status of the activity in the area. This will remain the case in Free Route Operations Airspace.

2.3.3.8 There is should be a potential for airspace reservations to be reconfigured to meet different task needs.

2.3.3.9 In areas where coordination procedures (including civil/military coordination procedures) and airspace crossing conditions permit, the airspace users are allowed to flight plan routeings through airspace reservations. In some cases, tactical reroutinge will be provided if airspace reservation is not available for crossing. The expected maximum additional length of a tactical rerouting shall be promulgated through national AIS publications. In other cases, when such airspace is not available for crossing, 5LNC will be defined to facilitate flight planning clear of the airspace reservation and ensure required separation from the activity. The promulgation of these 5LNCs shall be ensured through national AIS Publication. If these points are to be used only for avoidance of airspace reservations, specific conditions for the use of these points for flight planning shall be published. An overall standardisation of the separation from airspace reservations will be required, in the longer term, especially for cross-border operations. Publication of activation time of airspace reservations should be considered. Note: The possibility of using lat/long should be considered.

2.3.4. Cross-Border Areas

2.3.4.1. A Cross-Border Area (CBA) is an airspace restriction or reservation established over international borders for specific operational requirements. This may take the form of a TSA or TRA. CBAs are established to allow military training and other operational flights on both sides of a border. CBAs, not being constrained by national borders, can be located so as to benefit both GAT and OAT operations. CBAs, combined with the potential use of CDRs through them, permit the improvement of the airspace structure in border areas and assist in the improvement of the ATS route network. CBAs can also improve operations across the borders in a FRA environment.

2.3.4.2. Political, legal, technical and operational agreements between the States concerned are required prior to the establishment of CBAs. Formal agreements for the establishment and use of CBAs have to address issues of sovereignty, defence, legality, liability, operations, the environment and Search and Rescue.

2.3.5. Prior/Reduced Coordination Airspace Procedures

2.3.5.1. A Prior Coordination Airspace (PCA) is a portion of airspace of defined dimensions within which individual GAT is permitted to fly "off-route" only after prior co-ordination initiated by GAT controllers with OAT controllers.

2.3.5.2. The PCA procedure, as another way of booking airspace, involves a given block of controlled airspace within which military activities can take place on an ad hoc basis with individual GAT transit allowed under rules specified in Letters of Agreement (LoAs) between the units concerned.
2.3.5.3. **A Reduced Coordination Airspace (RCA)** is a portion of airspace of defined dimensions within which GAT is permitted to fly "off-route" without requiring coordination between controllers.

2.3.5.4. When OAT traffic is of low intensity, the need for civil/military coordination of off-route GAT unnecessarily increases controller workload. The RCA procedure is usually applied for a very large area such as the entire FIR/UIR, but also for critical ACC sectors which have different capacity figures according to the existence of military activity or not.

2.3.5.5. Before GAT is permitted “off-route”, the OAT controller responsible for the separation between OAT and GAT, must have ready access to all necessary flight and radar data, including controller’s intentions, on all relevant GAT within his area of responsibility.
2.4. PARTICULAR APPLICATION OF THE FUA CONCEPT

2.4.1. ATS Routes

2.4.1.1. Under ICAO provisions, an ATS route is a specified route designated for the routeing of GAT and for the provision of air traffic services. The term "ATS route" is used in the ASM Handbook to mean variously: Upper Air Route, Airway, Advisory Route, Standard Instrument Departure or Standard Instrument Arrival Route, RNAV Route or Conditional Route.

2.4.1.2. The term "Permanent ATS Route" is used in this Handbook to designate all ATS routes other than Conditional Routes (CDRs). A Permanent ATS Route is therefore a permanently designated route which is not subject to daily management at ASM Level 2 by AMCs. Nevertheless, a Permanent ATS Route can be closed, but only under specific conditions specified at ASM Level 1 and published by NOTAM, e.g. for large scale military exercises.

2.4.2. Airspace Restrictions - R, D, P Areas

2.4.2.1. Some aerial activities which pose a potential risk to other users may not be possible to plan the day before operation. In these circumstances, States may retain or establish R, D or Prohibited (P) areas for safety and notification reasons.

2.4.2.2. When an airspace restriction is manageable at ASM Level 2, the FUA concept recommends that, where possible, R and D areas are replaced or modified by TRAs or TSAs. Those States which have a continuing requirement to retain R and D areas should, however, allocate and activate such areas in the same way as TRAs or TSAs. The AIP identifies as “AMC-Manageable Areas” those R and D areas managed and allocated at ASM Level 2.

2.4.2.3. Any remaining R, D and P areas that are not suitable for ASM Level 2 management remain unaltered from traditional utilisation and are identified as such in the AIP.

2.4.3. Free Route Operations Airspace

2.4.3.1. Free Route Operations Airspace forms an integral part of the overall European ATM network, interfacing vertically and/or laterally with adjoining fixed route operations airspace.

2.4.3.2. Airspace reservations will remain, and as all airspace users will have equal access to Free Route Operations Airspace, harmonised application of the FUA Concept and Civil/Military Coordination will be taken into account in order to ensure harmonised procedures and service provision for the benefit of all the airspace users. OAT enroute shall benefit in a similar way from the implementation of Free Route Operations Airspace. Existing or new OAT route structures/areas and civil flows should be compatible.

2.4.3.3. Procedures shall be developed between the Network Operations Centre and all interested parties to ensure a harmonised application of procedures for the avoidance of airspace reservations when active.

2.4.3.4. States may decide to implement Free Route Operations Airspace on a structurally limited basis, for example by restricting the available entry/exit points for certain traffic flows and/or requiring aircraft to route via published or ad hoc intermediate points2, which could increase

2 ERNIP Part1 chapter 6.5: “In order to benefit from the best operating conditions, airspace users may be allowed to use any intermediate Lat/Long points for flight planning. Such possibility shall be clearly promulgated in national AIS publications. Where such utilisation is not possible, publication of intermediate SLNC points shall be ensured.”
predictability and reduce the number of potential conflicts. Another example could be temporary implementation of FRA operations (e.g. during the night or the weekend).

2.4.3.5. ASM in Free Route Operations Airspace will differ from that of the fixed Route Network in that AOs will no longer be given information on which routes are available, but will need to know which airspace is available/not available. For the transit period of a given flight through Free Route Operations Airspace, the airspace users will need to know the activity of all pertinent airspace reservations to enable the selection of a flight path that will avoid them. This may include routeing via published or ad hoc intermediate points to ensure adequate separation from active airspace reservations is maintained. ATC units, corresponding military units, airspace users and the Network Manager will need to know and share the same updated information with regard to activity of airspace reservations.

2.4.4 Controlled Airspace

2.4.4.1 In controlled airspace CDRs, TRAs/TSAs and/or AMC-manageable R or D areas are designated at ASM Level 1 as "pre-determined" airspace structures to be allocated or deactivated at ASM Level 2 by AMCs on a day-to-day basis and used at ASM Level 3 under conditions known by both civil and military airspace users and control units involved.

2.4.5 Uncontrolled Airspace

2.4.5.1 Uncontrolled airspace is by definition ICAO airspace classes F and G.

2.4.5.2 It is recognised that a major difference between upper and lower airspace, and therefore a potential difficulty, is that the lower airspace introduces the element of uncontrolled airspace and therefore an unknown traffic environment. This is particularly the case where a portion of controlled airspace (ICAO classification A to E inclusive), borders a portion of uncontrolled airspace (classification F or G). The main difficulty related to the application of FUA is the way of informing in real time the users and/or the ATS Providers about the current airspace structure and associated status. In order to guarantee the safety and the access to the airspace information to the wider audience, the implementation of FUA in uncontrolled airspace should be addressed with caution considering the local special requirements (see 5.6.3.6) and the local procedures, with due attention to the possibility to apply procedure 3. A dedicated local safety assessment should be performed.

2.4.5.3 Under the ICAO system of airspace classes, classification A excludes VFR; in classes B, C and D airspace VFR traffic are required to obtain an ATC clearance to operate; therefore, airspace with those classifications can be considered as a known traffic environment. In class E airspace, although under the heading of controlled airspace, VFR traffic are not required to obtain an ATC clearance or carry a radio and, therefore, this airspace has to be considered as an unknown traffic environment.

2.4.5.4 Implementation of FUA in the lower airspace therefore requires a distinction to be made between the FUA in a known traffic environment including the Terminal Areas (CTA, CTR, and ATZ) and the FUA in an unknown traffic environment.

2.4.5.5 As with the upper airspace, the application of FUA in the lower controlled airspace, is centred upon flexible airspace structures (see para 2.3) being made available to the various users according to the usual FUA procedures. Some member States have a requirement to accommodate certain flying activities, such as glider flying, in controlled airspace wherein that activity would not normally be possible. In addition, depending upon the legal structure of the airspace, it may not be possible to change the airspace classification in real time. Therefore a need is identified to provide for the establishment of temporary segregated airspace which classification may not change but where the requirements for ATC services are temporarily suspended. Aircraft other than the temporarily
accommodated aircraft will not be cleared into that volume of airspace whilst it is segregated.

2.4.5.6 The procedures for activation, deactivation and operating within the segregated volume of airspace should be contained in a written agreement agreed between the appropriate ATS authority and the responsible aircraft operating entity.

2.5. TRANSITION TO THE FUA CONCEPT

2.5.1 A State adopting the FUA concept is committed to reassess current national airspace and route structures with the aim of implementing a flexible airspace organisation.

2.5.2 The resulting transition from its current airspace situation into the flexible airspace organisation under the FUA concept can be summarised as follows (Figure 2):

<table>
<thead>
<tr>
<th>WITHOUT FUA</th>
<th>WITH FUA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic ATS routes</td>
<td>“Permanent” ATS routes</td>
</tr>
<tr>
<td>Temporary routes, Week-end routes, Complementary routes, Selected tracks, Link routes, Off-load routes etc…</td>
<td>CDR1, CDR2 and/or CDR3 CDR1 when SCC implemented</td>
</tr>
<tr>
<td>TRAs, MTAs, Type C areas, etc…</td>
<td>TRAs or TSAs and, where applicable, CBAs (TRA or TSA by its nature)</td>
</tr>
<tr>
<td>R (TRA) or D (TRA) D or R to be manageable at ASM Level 2</td>
<td>TRAs or TSAs or, if not possible, AMC-Manageable Areas</td>
</tr>
<tr>
<td>D or R not manageable at ASM Level 2</td>
<td>D or R with possibility of reduced use known by the AMCs the day before operations</td>
</tr>
<tr>
<td>Different blanket approval and/or prior coordination procedures for off-route GAT</td>
<td>PCA/RCA procedures</td>
</tr>
</tbody>
</table>

Figure 2: Transition to the FUA concept

2.6 ATS/ASM/ATFCM RELATIONSHIP

2.6.1 **General**

2.6.1.1. As an integral part of ATM, ASM should work in close cooperation with both ATS and ATFCM.

2.6.1.2. An airspace structure reorganised to increase the accessibility of more airspace is accepted as essential to increasing the capacity of the ATS system and reducing GAT delays. Therefore, Area Control Centre (ACC) sector capacity figures will improve in response to the different route and airspace organisation resulting from the daily AMC allocation.
2.6.1.3. In order to achieve an improvement in airspace use, the link between ASM and ATFCM is harmonised at all the three Levels including compatibility between ATS, ASM and ATFCM procedures and timetables.

2.6.1.4. During an initial phase, all related pre-tactical ASM Level 2 and ATFCM activities, will take place within a common agreed timetable as illustrated in Annex 3.

2.6.2. **ASM/ATFCM Relationship at Strategic Level - ASM Level 1**

2.6.2.1. Both ASM and ATFCM have a Strategic Planning Phase. In ASM Level 1, this consists of a periodical review of the use made of the airspace using traffic statistics and forecasts.

2.6.2.2. ATFCM Level 1 identifies choke points, sector capacity and demand imbalances which should be examined in parallel with the ASM Level 1 review. This national periodical review process involving both airspace & route planners, ACCs/FMPs and AMC, should keep pace with the development of improved navigation capabilities, advanced ATC techniques and changes in user requirements.

2.6.2.3. The planning and establishment of FRA, permanent ATS routes and CDRs is conducted nationally and at sub-regional level within the framework of a coordinated and cooperative European-wide airspace organisation. This cooperative and continuous planning process is done within the specialised NETOPS Team Sub-Group (RNDSG).

2.6.2.4. The national airspace review also assists the annual ICAO StratPlan meetings, organised by the EUROCONTROL NM, to establish solutions to identified bottlenecks for the following summer.

2.6.2.5. The Route Availability Document (RAD) enables ATC to maximise capacity by defining route restrictions that provide an organised system of major traffic flows while allowing aircraft operators flight planning flexibility. The RAD is therefore based primarily on permanent ATS routes and CDRs and includes route restrictions as published in the national AIPs, LoAs, NOTAMs and AIP Supplements. The RAD includes a number of permanent routeing suggestions to assist AOs in the preparation of their flight plans; these suggestions are advisory and not mandatory.

2.6.2.6. In addition, routeing scenarios in conformity with the RAD are implemented by the FMD after coordination, through the teleconference procedure, with FMPs and AOs concerned. These routeing scenarios become mandatory for the period expected to be critical. Exceptions are made for State aircraft where the scenario would compromise a diplomatic clearance.

2.6.2.7. An international review of CDRs has also to be undertaken periodically for a given region to assess from practical experience of ACCs/FMPs and AMCs the benefits gained from the use of CDRs in terms of sector capacity increase and/or better traffic distribution, in addition to the shorter routeing provided. This review of CDRs usage will allow the identification of predefined CDR scenarios, if possible for the following summer, to be used during the pre-tactical ATFCM phase by the NM in coordination with FMPs concerned, to solve any ATFCM problems.

2.6.2.8. An international review of the application of FUA concept in Free Route Operations Airspace at network level should be undertaken periodically in order to assess, from practical experience of ACCs/FMPs and AMCs, the effectiveness of the process and procedures applied and the efficiency of the interface among different regions where FRA is implemented. In specific, the review of areas’ usage allows the identification of pre-defined airspace scenarios to be used during the pre-tactical ASM/ATFCM phase by the NM in coordination with AMCs and FMPs concerned.
2.6.3 **ASM/ATFCM Relationship at Pre-Tactical Level - ASM Level 2**

2.6.3.1. In the pre-tactical ASM/ATFCM phase, the NM highlights areas of insufficient ATC capacity. Routeing scenarios following the RAD or using predefined scenarios for critical ACC sectors have then to be considered to solve capacity shortfalls in coordination with ACCs/FMPs concerned.

2.6.3.2. User requirements necessitating segregated airspace form the basis for requests and allocation of TRAs and TSAs. The usage of predefined airspace scenarios may be promoted to improve airspace utilisation, especially across States boundaries and in FRA.

2.6.4. **ATC/ASM/ATFCM Relationship at Tactical Level - ASM Level 3**

2.6.4.1. If a reduction in the activation time of a TRA or TSA is agreed between units, the subsequent release of airspace enables civil ACCs to open certain CDRs and/or re-route traffic flows in FRA at short notice. Similarly, ATS units responsible for OAT and/or controlling military units are able to use TRAs or TSAs at short notice taking into account the general ATFCM plan as well as the impact on implemented pre-defined airspace scenarios. To enlarge or combine TRAs or TSAs civil ACCs may be able to allocate, at short notice, some flight levels of an ATS route segment, or within FRA, for temporary OAT use.

2.6.4.2. The use of the RCA procedure, by direct agreement between the control units (ATS units and/or controlling military units) involved, reduces the GAT controller's workload by suppressing the need for individual coordination of any off-route GAT under PCA procedure and allows more direct routeings and permits radar vectoring around major high density crossing-points.

2.6.4.3. Under these circumstances the difference between ATS, ASM and ATFCM may become blurred. A civil ATC unit can be tasked with ATC, ASM and, through its FMP, ATFCM responsibilities simultaneously.

2.6.4.4. For example, the identification by the ACC of a TRA or TSA early deactivated and available for use of a CDR or of the corresponding volume of airspace in FRA is an ASM Level 3 task. The identification of particular CDRs or of a certain volume of airspace in FRA required to resolve an ACC/sector or another ACCs capacity problem is more a Pre-Tactical ATFCM task. The consequent re-routeing of the GAT flow on short notice is a tactical ATFCM task. Finally, the control of GAT on the newly re-opened CDR, or in a new available volume of airspace is an ATC task of the ACC. The control, coordination, safe and expeditious conduct of air traffic, including the resolution of GAT and OAT conflicts, remains within the ATS remit.
This page intentionally left blank
SECTION 3

STRATEGIC AIRSPACE MANAGEMENT (ASM LEVEL 1)

3.1 GENERAL

3.1.1 Strategic ASM at ASM Level 1 consists of a joint civil and military process established in each ECAC State by the "National High-Level Airspace Policy Body (HLAPB)". The HLAPB formulates the national ASM policy and carries out the necessary strategic planning work, taking into account national and international airspace users and ATS providers' requirements. Based on States agreement an HLAPB could be established at FAB level.

3.1.2 In those Member States where both civil and military authorities are responsible or involved in ASM, the HLAPB should be a joint civil-military body as referred in EUROCONTROL Specification for the Application of the Flexible Use of Airspace (FUA) (GEN-PRPL-01-01). The HLAPB should consist of the highest possible level of representation from the respective Ministry of Defence (MOD) and Ministry of Transport (MOT) and/or other regulatory entities (e.g. NSAs). In case of HLAPB established at FAB level, appropriate civil and military representation should be granted.

3.1.3 The main function of the HLAPB is therefore to ensure a safe and efficient use of the national/FAB airspace structure and ATS route network and to provide a continuum and transparency of operational handling at national borders based on harmonised agreements derived from collaborative airspace planning with neighbouring States.

3.1.4 This is to be achieved through the development, approval and enforcement of common national policies for an effective airspace allocation and review process, taking into account the needs of all stakeholders, including national security and defence needs, environmental issues as well as any particular neighbouring States requirements.

3.2 NATIONAL COLLABORATIVE AIRSPACE PLANNING

3.2.1 Strategic Objectives

The Strategic Objectives for the HLAPB are those described in EUROCONTROL Specification for the Application of the Flexible Use of Airspace (FUA) (GEN-PRPL-02-01). In case of HLAPB established at FAB level, specific written agreement will define its strategic objectives.

3.2.2 Responsibilities

The permanent HLAPB is required to establish a joint civil and military process to perform the following minimum functions, as set in the EUROCONTROL Specification for the Application of the Flexible Use of Airspace (FUA) (GEN-PRPL-02-02).

In addition, the HLAPB should:

a) formulate the national policy for airspace management the "Airspace Charter" (template presented at Annex 4 should be used);

b) periodically reassess the national airspace structure and ATS route network with the aim of planning, as far as possible, for flexible airspace structures and procedures in the upper and lower airspace (including Terminal Areas);

c) validate activities requiring airspace segregation and assess the level of risk for other airspace users;
d) conduct a safety assessment when planning for the establishment of FRA, CDRs, TRAs, TSAs, CBAs, AMC-manageable D and R areas, if required;

e) change or modify, if required and if practicable, D and R areas into temporary allocated airspace;

f) take into account the FUA concept when planning for airspace classifications;

g) coordinate major events such as large scale military exercises planned well in advance of the day of operation, which require additional segregated airspace, and notify these activities by AIS publication;

h) for airspace where SCC is not yet implemented, establish a list of days covering extended holiday periods when military operations are likely to be reduced, allowing the temporary conversion of some CDRs2 to CDRs1, and notify this status change by AIS publication (AIP Supplement);

i) periodically review the procedures and efficiency of ASM Level 2 operations, the submission of airspace requests by the national Approved Agencies (AAs), and the negotiating procedures and priority rules for airspace allocation;

j) periodically review the procedures and efficiency of ASM Level 3 operations, the prompt exchange and dynamic update of all necessary flight plan and radar data, and the use of adequate civil/military coordination facilities; and

k) provide a continuum and transparency of operational handling at national borders through collaborative airspace planning and harmonised airspace management procedures with neighbouring States.

In case of HLAPB established at FAB level, specific written agreement will define its functions and responsibilities

3.2.3 Principles

3.2.3.1 General

3.2.3.1.1 Principles sustaining the above Strategic Objectives and Functions of the HLAPB are mainly related to safety, consultation, cooperation and environment issues.

3.2.3.2 Safety

3.2.3.2.1 The generic safety requirements are those described in EUROCONTROL Specification for the Application of the Flexible Use of Airspace (FUA) (SAFE-REQU-01, SAFE-REQU-02, SAFE-REQU-04 and SAFE-REQU-03).

3.2.3.2.2 Safety should be the paramount concern for the HLAPB in carrying out its responsibilities. Safety performance levels shall be maintained or enhanced, and the planning of airspace arrangements shall take account of obligations imposed by higher authorities and safety regulation requirements.

3.2.3.2.3 The HLAPB will to the extent possible conform to international best practices and ensure that the airspace change processes, procedures and instructions are compatible with appropriate military and civil aviation safety procedures.

3.2.3.2.4 When considering and refining a proposal for an airspace change, the HLAPB should review, if required, the safety assessment of each case as supplied by the customer, to ensure that national and FAB/international plans evolve in an overall risk-reducing manner. In particular, a risk assessment should be systematically conducted by each ECAC State before FUA implementation.
3.2.3.3 Consultation

3.2.3.3.1 Consultation with airspace users, service providers and other relevant bodies should be conducted with the aim of obtaining consensus, wherever possible, before making changes in the planning or design of airspace arrangements.

3.2.3.3.2 The HLAPB is charged with reconciling civil and military operational needs without affording preferential treatment to either, and ensuring that airspace planning takes into account all user interests.

3.2.3.4 Cooperation

3.2.3.4.1 Close cooperation should be maintained with national and international partners to ensure that national airspace planning and policies are consistent with national and international commitments and programmes.

3.2.3.5 Environment

3.2.3.5.1 The environmental impact of airspace design and planning is to be taken into account at the earliest possible stage when revising airspace procedures and arrangements.

3.2.3.5.2 The HLAPB is also required to ensure, where appropriate, that any changes, which may have an adverse impact on the noise disturbance in the vicinity of an airport, are the subject of proper consultation with all those concerned.

3.2.4 Collaborative Working Organisation *

3.2.4.1 A National Airspace Management Advisory Committee could be established by the HLAPB. This advisory body will be consulted for advice and views on any major matter concerned with airspace management. However, depending on the size of the ATS organisation and the mandate of the HLAPB, the tasks dedicated to the National Airspace Management Advisory Committee can be carried out inside the HLAPB, as a supplementary function.

3.2.4.2 The main task of National Airspace Management Advisory Committee is to assist the HLAPB in the development of airspace policies, configurations and procedures in order that due attention is given to the diverse requirements of all airspace users and ATS providers, civil and military.

3.2.4.3 The Committee may be chaired by the Chairman of the HLAPB, with membership covering the whole spectrum of the aviation community in the State and remaining under constant review.

3.2.4.4 Most of the National Airspace Management Advisory Committee business will be conducted by correspondence, but the Committee will meet in Plenary Session on request.

3.2.4.5 A proposal, which may originate within the HLAPB or be initiated by a member organisation, will be circulated to the National Airspace Management Advisory Committee members for comments. If the proposal does not originate within the HLAPB itself, then the HLAPB views need also to be circulated.

Note: * As defined in the paragraph 1.1.2 the "Collaborative Working Organisation" and the associated activities should be considered as "recommended practices".

3 Normally such Committee is not required at FAB level
3.2.4.6 If the matter is straightforward, a consensus will easily emerge from which the HLAPB will then frame associated changes to legislation and/or alter airspace boundaries or associated procedures.

3.2.4.7 If the matter is more complex, then a sub-committee or working group may be set up by the HLAPB in which all interested members may play a part in formulating a report. A Plenary Session of the Committee will then be required to discuss the report and offer advice to the HLAPB.

3.2.4.8 The National Airspace Management Advisory Committee should be seen as a discussion board which operates on the principle that those who have a voice in the formulation of policies are more likely to abide by those policies. Such a principle therefore relies heavily on mutual trust and interest.

3.2.5 Common Airspace Policy Formulation and Review Process

3.2.5.1 This procedure will be commonly applied by each ECAC State to the development of all policies relevant to the planning of en-route and off-route airspace arrangements, airspace and related procedures, and regulatory functions which HLAPB exercises on behalf of all airspace users (civil and military) and ATS providers.

3.2.5.2 In the context of the Common Airspace Policy Formulation and Review Process, “Policy” refers to: “a standing decision rule which gives guidance on acceptable and unacceptable types of action to those with executive responsibility.”

3.2.5.3 The Common Airspace Policy Formulation and Review Process falls into six stages:
- identification of need;
- analysis of the potential impact;
- decision to proceed;
- consultation;
- approval; and
- publication;

3.2.5.4 The flowchart presented at Figure 3 illustrates the activities, considerations and requirements of the Common Airspace Policy Formulation and Review Process.

3.2.5.5 Proper coordination and agreement with the appropriate civil and military aviation organisations is a critical element of the process and should be carried out before any external consultation takes place.

3.2.5.6 An Impact Assessment (IA) describing the overall impact of a regulatory measure or policy change, including a safety case, an environmental assessment, a legal assessment and a cost benefit analysis, will be initiated and/or conducted, if required, by the HLAPB when formulating policy or initiating legislative change.

3.2.5.7 Policies are to be subject to periodic reviews. The criteria for review will be set out in the policy statement. The length of the review period should take into account the scale of impact of the new or revised policy.

3.2.5.8 If established at FAB level, the HLAPB could be responsible for some or all steps of the Common Airspace Policy Formulation and Review Process, except for the publication that should remain a national responsibility.
Figure 3: Common Airspace Policy Formulation and Review Process
3.2.6 Common Airspace Change Process

3.2.6.1 This procedure will be applied in the development of a common "Airspace Change Process" to be established by each ECAC State to ensure that proposed changes to airspace are initiated, considered, refined, approved and implemented in a safe and controlled manner, and in accordance with the policies and procedures laid down by the HLAPB.

3.2.6.2 In the context of the Common Airspace Change Process, "Clients" refers to: “those allowed requesting changes to airspace” (e.g. airspace users, ATS providers etc.).

3.2.6.3 The Client, on identifying a possible requirement to change airspace, will inform the HLAPB, which will then be available to offer advice on aspects concerning the guidelines, design, safety management and consultation. Ownership of the proposal will always remain with the Client.

3.2.6.4 The Client will carry out, if required, an initial informal consultation and, in the event of a deadlock situation or undue delay, may refer the problem to the HLAPB for advice. The HLAPB may then make a judgement, perhaps after further consultation with the objector, to decide how the objection should be handled.

3.2.6.5 On completion of the informal consultation, the Client will submit a formal proposal with full details of the change.

3.2.6.6 The HLAPB will be responsible, where necessary, for conducting the case study, formal consultation, proposal refinement, approval and establishment phases of the process.

3.2.6.7 The flowchart presented at Figure 4 illustrates the phases and activities of the Common Airspace Change Process.

3.2.6.8 On completion of the formal consultation and eventual refinement, the HLAPB will formally accept the project and agree on a completion date with the Client. The Client will be responsible for developing and subsequently publishing the ATC operational procedures, if so required.

3.2.6.9 For some major changes (e.g. involving extensive new procedures, cross-border airspace etc.), States should estimate a sufficient time (which must be reflected in the target completion date) to conduct the formal process in order to comply with the two AIRAC cycles required by ICAO for promulgation. Some changes may be concluded in less than the stated period but, where such changes are subject to publication by AIRAC cycle, unless a full AIRAC cycle can be gained, no reduction can be initiated.

3.2.6.10 All significant airspace changes will be subject to review by the HLAPB to ensure that they efficiently serve the purposes for which they were designed. The period between introduction and review will vary according to the complexity and purpose of the airspace. The time of the review will be agreed by the HLAPB and the Client prior to introduction of the changes.

3.2.6.11 If established at FAB level, the HLAPB could be responsible for some or all steps of the Common Airspace Change Process, except for the implementation, including publication that should remain a national responsibility.
Figure 4: Common Airspace Change Process
3.2.7 **ASM Level 1 Process for delineation of Free Route Operations Airspace**

3.2.7.1 With reference to the definition of FRA, the delineation of daily structures and restrictions should be based on clear criteria established at ASM Level 1.

3.2.7.2 Ensuing from the national collaborative and integrated airspace planning, States should apply a common process aiming at:

 a) defining clearly the assumptions to be taken into consideration when delineating the airspace;

 b) guaranteeing that these assumptions will be published in the appropriate LoAs in order to maintain a reference for subsequent future reviews of the airspace structure;

 c) making a clear distinction between the strategic delineation of the airspace and the operational use of it at the tactical level.

3.2.7.3 National high-level policy bodies should establish the defined criteria, taking into account all airspace users and ANS providers, as well as the various issues regarding the impact of the potential free route airspace on the adjoining airspace structures, procedures and ATFCM measures in force including:

 a) the location of the Free Route Operations Airspace (within a State's borders, adjacent to the border, cross-border location);

 b) the classification of the airspace within which Free Route Operations Airspace will be implemented;

 c) the location and extent of any reserved, segregated airspace;

 d) the associated altitude and/or flight level blocks;

 e) the impact of Free Route Operations Airspace on adjacent airspace structures;

 f) the impact of Free Route Operations Airspace on the capacity of the ATC sector(s);

 g) the separation criteria between traffic inside the ad hoc structure and transiting and/ or circumnavigating traffic;

 h) the airspace users allowed to request and use the ad hoc structure;

 i) the ANS providers and Air Defence (AD) units allowed to delineate and to control, if required, the ad hoc structure;

 j) the mandatory ATS to be provided;

 k) the mandatory coordination process, both national and international in the case of locations adjacent to or across a national border;

 l) the mandatory coordination means;

 m) the required airspace design tool allowing the display of the Free Route Operations Airspace structure on the Controller Working Positions (CWP) concerned.

3.2.7.4 By definition, the implementation of Free Route Operations Airspace offers the possibility of more freedom to manoeuvre and optimise the flight trajectory. However there will still be a requirement for ASM and ATFCM at ASM Levels 2 and 3. The flight trajectory should be continuously optimised to meet the best balance between the users’ needs, the prevailing flight circumstances, the requirement to ensure safety, and overall ATM efficiency. It should take into account actual weather conditions, airspace availability, any FUA structures and capacity/load
relationships in the en-route or terminal airspace, or at airports. The flight trajectory could be defined based on:

a) specific entry/exit points to the Free Route Operations Airspace
b) specific tracks between published waypoints or reporting points;
c) specific tracks based on headings;
d) specific flight level limitations
e) pre-determined coordination transfer points.

3.2.7.5 In order to accommodate airspace users’ requirements, ASM Levels 2 and 3 should be able to delineate ad hoc structures (see para 3.2.8.2.2) according to short notice and/or real time demands. These areas may encompass all current FUA structures (TRA/TSA, CBA, AMC-manageable D or R areas, etc.) associated with the appropriate required separation and/or spacing means, as well as additional areas acting as holding areas or extended TMA airspace, created in order to guarantee flight safety in case of any ATFCM constraints (e.g. circumnavigation of adverse weather, technical limitations of ATS ground equipment, etc.).

3.2.7.6 Different methods could be adopted when delineating ad hoc areas:

a) location in latitude/longitude of the dedicated points, associated with a level block;
b) the radius of the area centred on a point (defined by coordinates), associated with the level block;
c) specific volume around a flight (e.g., 5 NM from a flight);
d) specific tracks flown between published reporting points or based on a drawing on a chart (e.g. air to air refuelling or civil photo missions)
e) in relation to a navigational aid.

3.2.8 Dynamic Airspace Management

3.2.8.1 General

3.2.8.1.1 The intent of Dynamic Airspace Management (DAM) is to establish processes exploiting the airspace in a dynamic manner as close as practical to the time of operations to better accommodate users’ requirements in accordance with ever evolving network operations. As such, the DAM process should complement ASM activities usually conducted at ASM Level 2 as described in Section 4, but restricted to a limited timeframe (i.e. the day before operations).

3.2.8.1.2 The DAM process refers to the use of additional procedures for the delineation and allocation of airspace, and the associated dissemination of information with the aim of enhancing the current FUA process to respond to specific airspace requirements and/or route optimisation.

3.2.8.1.3 DAM addresses the planning, allocation and use of dynamic airspace structures to exploit optimum airspace capacity as a part of defining airspace configurations. This may be achieved through either existing airspace structures or those delineated ad hoc.

3.2.8.1.4 The elements of the dynamic airspace structure planning are:
- greater choice of routes by including route options supplemented by suitable alternatives as a function of modularity of airspace reservation or restriction;
- greater flexibility to respond to short notice military operational requirements for existing or additional portion of airspace;
provision of proactive route activation/airspace reservation or restriction allocation through a collaborative decision making process to accommodate short-term changes in routeings and civil traffic demand in coordination with airspace reservation or restriction requests, adjusted to match the military training and operational profile.

3.2.8.1.5 DAM addresses the Once an adequate information awareness system is in place, 'ad hoc structures', whether routes or areas, would be established on an ad hoc basis to meet operational needs at shorter notice than the usual ASM Level 1 process. The establishment of such ad hoc structures at ASM Level 2 or ASM Level 3 should follow the general design and safety management criteria.

3.2.8.1.6 Prior to implementing any DAM process at the three ASM levels, the following topics must be addressed and referred to in order to enhance the Basic FUA concept:

- **Delineation of Airspace Structures:** ASM Level 1 establishes airspace structures and defines their conditions of use through a series of options based on sub-division of temporary airspace reservations or restrictions and an increased number of related CDR routes where suitable (e.g. outside FRA environment), as well as identification of pre-defined airspace scenarios. ASM Level 1 also defines and establishes processes and procedures allowing for the delineation of additional ad hoc airspace structures at ASM Levels 2 and 3 as appropriate.

- **Allocation of Airspace Structures:** At ASM Level 2, the airspace planning and allocation process enables the allocation of specific airspace configurations, based on a predefined airspace scenarios and/or an ad hoc airspace structure, in response to specific airspace requirements and/or route optimisation. At ASM Level 3, a decision-making process needs to be implemented, allowing all partners involved to discuss, modify and agree at short notice (i.e. as near real time as possible) on the allocation / reallocation of airspace on the day of operations.

- **Dissemination of Information on Airspace Structures:** ASM system supported tools are used at ASM Levels 2 and 3 in order to inform all airspace users and providers affected by any airspace changes resulting from the DAM process, and to increase common situational awareness.

3.2.8.1.7 Within these dynamic airspace structures planning, allocation and using processes, permanent ATS routes and available CDRs should be plannable, while predefined airspace scenarios and/or ad hoc temporary airspace reservations or restrictions would remain inactive until formally allocated.

3.2.8.1.8 The DAM process enables all airspace users to follow preferred and flexible flight profiles and provides for two major benefits:

- equitable treatment in allocation of airspace and trajectories required at short notice;
- aircraft operators to increase their awareness of possible routeing options.

- **Delineation of Airspace Structures:** ASM Level 1 establishes airspace structures and defines their conditions of use through a series of options based on sub-division of temporary airspace reservations or restrictions and an increased number of related CDR routes where suitable (e.g. outside FRA environment), as well as identification of pre-defined airspace scenarios. ASM Level 1 also defines and establishes processes and procedures allowing for the delineation of additional ad hoc airspace structures at ASM Levels 2 and 3 as appropriate.

- **Allocation of Airspace Structures:** At ASM Level 2, the airspace planning and allocation process enables the allocation of specific airspace configurations, based on a predefined airspace scenarios and/or an ad hoc airspace structure, in response to specific airspace requirements and/or route optimisation. At ASM Level 3, a decision-making process needs to be implemented, allowing all partners involved to discuss, modify and agree at short notice (i.e. as near real time as possible) on the allocation / reallocation of airspace on the day of operations.

- **Dissemination of Information on Airspace Structures:** ASM system supported tools are used at ASM Levels 2 and 3 in order to inform all airspace users and providers affected by any airspace changes resulting from the DAM process, and to increase common situational awareness.

3.2.8.1.7 Within these dynamic airspace structures planning, allocation and using processes, permanent ATS routes and available CDRs should be plannable, while predefined airspace scenarios and/or ad hoc temporary airspace reservations or restrictions would remain inactive until formally allocated.

3.2.8.1.8 The DAM process enables all airspace users to follow preferred and flexible flight profiles and provides for two major benefits:

- equitable treatment in allocation of airspace and trajectories required at short notice;
- aircraft operators to increase their awareness of possible routeing options.
3.2.8.1.9 Summary table

<table>
<thead>
<tr>
<th>ASM</th>
<th>ASM Level 1</th>
<th>ASM Level 2</th>
<th>ASM Level 3</th>
</tr>
</thead>
</table>
| **Airspace Delineation** | **Basic FUA**
- Airspace Design Process
- Establishment of airspace structures (with a limited number of scenarios) | Ad hoc structure | Ad hoc structure |
| **Dynamic Airspace Management** | - Establishment of airspace structures offering greater choice of route options and flexibility to extend/ sub-divide military training areas
- Ad hoc Airspace Delineation Process | | |
| **Airspace Allocation** | **Basic FUA**
Priority Rules and Negotiation Process | Current AMC Process | Limited to real time activation / de-activation |
| **Dynamic Airspace Management** | 'Modus Operandi' of predefined scenarios | Enhanced AMC Process moved closer to time of operation | Collaborative Decision-making Process at very short notice |
| **Information, Collection and Dissemination** | **Basic FUA**
AIP NOTAM | AUP / UUP EAUP/EUUP | Tel / Fax / Radio / NOTAM / Data Processing |
| **Dynamic Airspace Management** | Airspace Data Repository | Airspace Data Repository | Airspace Data Repository
Tel / Radio / Data Link
Digital NOTAM |

Figure 5: Enhanced Basic FUA Process with Dynamic Airspace Management
3.2.8.2 Delineation of dynamic airspace structures

3.2.8.2.1 ASM Level 1 Process for design of dynamic airspace structures enabling activation of predefined airspace configurations

3.2.8.2.1.1 The design of an ATS route structure, including CDRs and OAT routes and of temporary airspace reservations or restrictions (TRA/TSA/CBA), including pre-defined airspace scenarios, at national ASM Level 1 and the traffic distribution at Strategic ATFCM Level are developed in close correlation within the framework of the European Network Operations in a coordinated and cooperative process at national, sub-regional and regional level:

- the route architecture should be planned to include adjustable elements in order to accommodate variations in expected traffic demand
- In a FRA environment, modularity of temporary airspace reservations or restrictions and/or identification of pre-defined airspace scenarios, especially across State boundaries, should be promoted to introduce more flexibility to accommodate civil-military demands, while
- the traffic distribution conforms with the set of predefined airspace configurations in order to derive the best possible capacity.

3.2.8.2.2 ASM Level 1 Process allowing the delineation of ad hoc structures at ASM Levels 2 & 3

3.2.8.2.2.1 With reference to the definition of DAM (contained in paragraph 3.2.8.1.2), the daily delineation of ad hoc structures at ASM Levels 2 and 3 should be based on clear criteria established at ASM Level 1.

a) Ensuring from the national collaborative and integrated airspace planning, States should apply a common process aiming at:

b) defining clearly the assumptions to be taken into consideration when delineating the airspace;

c) guaranteeing that these assumptions will be published in the appropriate LoAs in order to maintain a reference for subsequent future reviews of the airspace structure;

d) making a clear distinction between the strategic delineation of the airspace and the operational use of it at tactical level.

3.2.8.2.2.2 High-level policy bodies should establish the defined criteria, taking into account all airspace users and ANS providers, as well as the various issues regarding the impact of the potential ad hoc structure on the current airspace structures, procedures and ATFCM measures in force:

a) the location of the ad hoc structure (within a State’s borders, adjacent to the border, cross-border location);

b) the classification of the airspace within which the ad hoc structure will be implemented;

c) the airspace status (reserved, segregated);

d) the associated altitude and / or flight level blocks;

e) the impact of the ad hoc structure on the current airspace structure;

f) the impact of the ad hoc structure on the capacity of the ATC sector(s);

g) the separation criteria between traffic inside the ad hoc structure and transiting and / or circumnavigating traffic;

h) the airspace users allowed to request and use the ad hoc structure;

i) the ANS providers and Air Defence (AD) units allowed to delineate and to control, if required, the ad hoc structure;
3.2.8.2.2.3 In busy and congested airspace, a significant number of flights operate on published ATS routes. In less constrained airspace there might be more freedom to manoeuvre and optimise the flight trajectory. Both cases however, offer a possibility of ad hoc routeings at ASM Levels 2 and 3, subject to sector workload, e.g. in case of early closure of an AMC-Manageable Area. The flight trajectory should be continuously optimised to meet the best balance between the users’ needs, the prevailing flight circumstances, the requirement to ensure safety, and overall ATM efficiency. It should take into account actual weather conditions, airspace availability and capacity/load relationships in the en-route or terminal airspace, or at airports. The ad hoc routeing could be defined based on:

a) specific tracks between published reporting points;
b) specific tracks based on headings;
c) random coordination transfer points.

This freedom to manoeuvre for optimisation of flight trajectory is emphasised in a FRA environment, where dynamic management of temporary airspace structures (e.g. TSA/TRA), including ad hoc delineation of airspace structures, should be exploited.

3.2.8.2.2.4 Similarly, and in order to better match the airspace users’ requirements, ASM Levels 2 and 3 should be able to delineate ad hoc areas according to short notice and/or real time demands.

3.2.8.2.2.5 These areas may encompass all current FUA structures (TRA/TSA, CBA, AMC-manageable D or R areas, etc.) associated with the appropriate required separation and/or spacing means, as well as additional areas acting as holding areas or extended TMA airspace, created in order to guarantee flight safety in case of any ATFCM constraints (e.g. circumnavigation of adverse weather, technical limitations of ATS ground equipment, etc.).

3.2.8.2.2.6 Different methods could be adopted when delineating ad hoc areas:

a) location in latitude/longitude of the dedicated points, associated with the level block;
b) the radius of the area centred on a point (defined by coordinates), associated with the level block;
c) a specific volume around a flight (e.g. 5 NM from a flight);
d) specific tracks flown between published reporting points or based on a drawing on a chart (e.g. air to air refuelling or civil photo missions);
e) in relation to a navigational aid.

3.2.8.2.2.7 The use of a common airspace design tool allowing the representation of the area and its display on the current traffic situation picture may be required. It would ease the collaborative decision-making process between the partners concerned in presenting an ad hoc area (impact assessment) and to avoid any misunderstanding in the definition of its volume and its location.

3.2.8.2.2.8 The HLAPB should establish an efficient coordination process between all airspace users and ANS providers, allowing the delineation of ad hoc structures at ASM Levels 2 and 3. During the process development, care should be taken that operations on short notice will not be hindered by other activities already allocated; furthermore, the HLAPB should be informed of any discrepancies in order to review the process, ensuring that it serves efficiently the purposes for which it was designed initially.
3.2.8.2.9 The ASM Level 2 and 3 negotiation rules should be published in the LoAs established at ASM Level 1. These rules should clearly define the civil/military coordination process, the circumstances (nature of activity, civil/military coordination capability, etc.) and the conditions (ad hoc airspace classification, coordination procedures, etc.) under which the ad hoc structures could be delineated. Coordination between all parties involved (civil and military airspace users, ANS providers, NM, adjacent AMCs), should be conducted in order to maintain consistency with the current airspace structures, while ensuring that operational and safety requirements are met and that ad hoc structures do not impact on ATFCM measures in force.

3.2.8.2.4 Delineation of ad hoc structures at ASM Level 2

3.2.8.2.4.1 According to the criteria and processes established at ASM Level 1, the AMCs should be able to perform ad hoc structure delineation at short notice in order to respond quickly and effectively to airspace users’ requirements.

3.2.8.2.4.2 The AMCs should apply standard procedures, including the collection, analysis and conflict resolution of the airspace requests and the airspace allocation. However, due to the inherent short time span, these basic procedures should be conducted simultaneously with a close coordination process involving all airspace users, ANS providers, adjacent AMCs concerned and the NM.

3.2.8.2.4.3 The methods used to delineate ad hoc routeing and areas should comply with the guidelines established at ASM Level 1.

3.2.8.2.4.4 The use of a common airspace design tool may ease the coordination process in guaranteeing the exchange of harmonised airspace data information and in ensuring that short-notice operations and associated ad hoc airspace delineation will not be hindered by other activities that have already been allocated at ASM Level 2 but are not yet occurring.

3.2.8.2.5 Delineation of ad hoc structures at ASM Level 3

3.2.8.2.5.1 According to ASM Level 1 criteria and processes, ASM Level 3 should be able to perform real time delineation of ad hoc airspace structures in order to better match the airspace users' needs and to accommodate the traffic flow requirements in optimising the flights' trajectories.

3.2.8.2.5.2 Adequate real time coordination facilities (airspace design tool, direct controller-controller communication means, etc.) should be required and accurate procedures should be published in relevant LoAs.

3.2.8.2.5.3 The methods used to delineate ad hoc routeings and areas should comply with the guidelines established at ASM Level 1.

3.2.8.2.5.4 The use of a common airspace design tool may ease the coordination process in guaranteeing the exchange of harmonised airspace data information and in allowing all parties concerned to assess in real time the impact of the ad hoc structure on the current air traffic picture. It also permits the automatic and simultaneous display of the new airspace structure on all CWPs concerned.

3.2.8.3 Airspace Allocation Process

3.2.8.3.1 Dynamic Airspace Allocation Process at ASM Level 2

3.2.8.3.1.1 Pre-tactical ATFCM activities for an optimised capacity management allow the NM together with ACCs/FMPs concerned to identify capacity shortfalls which can be solved by a better airspace allocation early in advance. Then, at pre-tactical ASM Level 2, the activation of airspace configurations to resolve a substantial capacity issue or military
operational requirement is coordinated directly between the NM and designated AMCs (in addition to standard coordination with ACCs/FMPs) providing them with wider information on overall traffic demand.

3.2.8.3.1.2 Equally, the use of a more dynamic route activation/airspace allocation to accommodate local, sub-regional and regional short-term needs entails closer coordination between AMCs, ACCs/FMPs and NM in order to assess the impact of local AMC decisions on the overall traffic situation.

3.2.8.3.1.3 This coordination is supported by various systems allowing for the required exchange of information between them as illustrated in Figure 6 below.

![Figure 6: AMC, FMP and NM co-ordination process](image)

3.2.8.3.1.4 The airspace allocation process at ASM Level 2 should also respond to specific short-notice airspace requirements and/or route optimisation. It should ensure that within such a reduced time window (e.g. up to a few hours before operations), the AMC can still collect, coordinate and assess the airspace request with all parties concerned as illustrated above in Figure 4, before determining airspace and routeing allocations.

3.2.8.3.2 Dynamic Airspace Allocation Process at ASM Level 3

3.2.8.3.1.1 The ASM Level 3 airspace allocation, as described in Chapter 5.5, is commonly an activation / deactivation process of airspace structures in accordance with ASM Level 2 allocation decisions published in the AUP/UUPs. However, there is a need for the dynamic allocation process that could be conducted both at pre-tactical and tactical level.

3.2.8.3.1.2 At ASM Level 3, airspace could be requested and delineated within a very short period of time, i.e. as close to real time as possible. The airspace allocation at tactical level could be done directly between civil and military units concerned based on explicit rules and procedures laid down in their LoA.

4 Figure 6 describes the coordination process regardless of the organisational or functional integration, e.g. integrated AMC/FMP functions.
3.2.8.3.1.3 The dynamic allocation process at ASM Level 3 requires the establishment of an efficient Collaborative Decision Making (CDM) process, based on active coordination between the actors involved.

3.2.8.3.1.4 The narrowing of the AMC time window and the shift towards ASM Level 3 allocation does not imply a degradation of the responsibility levels, but only refers to a change in:
- actors involved in the negotiation process;
- the time available; and
- the required advance notice of the decision taken, including notification to airborne traffic.

3.2.8.3.1.5 The goal of the ASM Level 3 airspace allocation decision-making process illustrated in Figure 7 below is to enable the actors to improve mutual knowledge of the forecast/current situations and of each other’s constraints, preferences and capabilities. It consists of proactive negotiation and resolution of potential short-term/actual airspace problems. It requires the development of new system-supported tools and/or the enhancement of the present technical facilities or an extension of those identified for ASM Level 2.

![Figure 7: Establishment of a CDM process for dynamic airspace allocation at ASM Level 3](image)

3.2.8.4 Dissemination of Information on Short-notice Changes to Airspace Status

3.2.8.4.1 Current AUP/UUP Process

3.2.8.3.2.1 Within the current AUP/UUP process described in Section 6, the dissemination of dynamic airspace allocation decisions is based on broadcasting information via NOP Portal and eAMI messages for B2B service.

3.2.8.3.2.2 Such AMC decisions on dynamic airspace allocation are also notified directly to AOs based on the personalized addressing of those potentially interested through NM, by e.g. Re-routeing Proposal (RRP) messages.
3.2.8.4.2 Airspace Data Repository

3.2.8.3.2.1 In order to get full benefits from dynamic airspace allocation and to overcome the limitations of the current mechanisms for the dissemination of information, a common airspace data pooling system is to be set-up as the ‘Airspace Data Repository’.

3.2.8.3.2.2 The ADR is based on a link between the European AIS Database (EAD), the NM Environment Database and is able to provide a collaborative distributed environment for the storage, exchange and dissemination of up-to-date and accurate airspace data between airspace users and ATM providers.

3.2.8.4.3 ATM Units Communication

3.2.8.3.2.1 There is a need to ensure, in particular, the real time notification to all ATM parties concerned, including the NM, if required, with up-to-date information on the short-term allocation and/or current use of airspace.

3.2.8.4.4 Controller - Pilot Communication

3.2.8.3.2.1 Bringing the pre-tactical and tactical timeframes closer together also implies that short notice or real time changes to airspace status stemming from the dynamic airspace allocation process could effectively affect airborne traffic.

3.2.8.3.2.2 There is therefore a need to establish a process to inform users in-flight. There are different possibilities to inform pilots on these airspace changes, i.e. through AO on a dedicated frequency, ATC and data link.

3.2.8.4.5 Flight Plan Updates

3.2.8.3.2.1 More generally, so as to ascertain the necessary update of flight plans affected by short-notice or real time changes to airspace status, current flight plan processing and distribution processes should be enhanced in order to provide FPL changes up to and including the airport of destination, through the use of standard criteria for FPL processing so as to cover the following issues:

- a clear definition of the responsibility of the IFPS as regards FPL amendments close to the EOBT (i.e. until an agreed time before EOBT);
- similarly, the definition of responsibility of the ATSU concerned in FPL amendments (from an agreed time before EOBT);
- when the flight is airborne, the establishment of a process permitting the IFPS to consider the change to the initial FPL, allowing all ATSU(s) concerned (including the airport ATSU) to assess and validate this change and ensuring the distribution of this change to the appropriate addressees.

Based on the D-1 AUP and UUP process, AOs should update their flight plan according to the changes proposed until an agreed time, e.g. 1 hour, before EOBT. Any change that has occurred based on the D-1 AUP and UUP process after the agreed time before EOBT may still be processed through re-filing of the flight plan pending assessment and validation of the ATSU(s) concerned. Real time changes to airspace status are tactically processed through ATSU(s) following a standard current flight plan change process.
3.3 INTERNATIONAL COLLABORATIVE AIRSPACE PLANNING

3.3.1 General

Airspace organisation and management should evolve to a more collaborative function at an international level in order to support the ECAC collective responsibility for all aspects of planning, design, maintenance, update, civil/military coordination, regulation and airspace legislation. The main objective is to optimise the airspace structure of the entire ECAC airspace so as to be more responsive to the airspace users’ needs.

3.3.2 Airspace Configurations

3.3.2.1 In terms of international collaborative airspace planning, the Airspace Strategy introduces the Airspace Configuration Concept as the solution to improve the CDM process at a European level. The airspace configurations are to be comprised of predefined fixed and flexible airspace structures, including temporary airspace reservations, if feasible pre-defined airspace scenarios, routeing options or optimised trajectories and optimum ATC sectorisation capable of being dynamically adapted to traffic demand. Airspace configurations are to be activated, through a CDM process, depending upon the driving strategic objective(s) for a particular geographic area and/or time period.

3.3.2.2 Airspace Configurations are aimed at responding to differing strategic objectives (capacity, flight efficiency, environmental) at airspace network level. Airspace Configurations result from improvements to the organisation of the airspace and Airspace Network Management. Airspace Configurations provide for a more integrated approach between airspace structures (including optimum trajectories and Terminal Airspace) and airspace network management with more flexibility in the latter. Furthermore, Airspace Configurations respond to more strategic objectives (they extend beyond demand and capacity balancing).

3.3.2.3 The composition of en route and terminal routes, optimized trajectories, airspace reservations and ATC sectors into airspace configurations is defined and dynamically managed together to respond flexibly to different performance objectives which vary in time and place. The same applies when managing Free Route Operations Airspace.

3.3.2.4 Airspace configurations are activated through integrated collaborative decision making processes at national, sub-regional (FAB) and European airspace network level.

3.3.2.5 The airspace configurations are to ensure that safety, flight efficiency, airspace capacity and environmental protection are taken into account of when developing methodology for a particular airspace configuration to be applied.

3.3.2.6 Processes and procedures should be developed to enable coordinated access to different airspace configurations e.g.:

 a) weekend routes;
 b) CDRs and other routes on other busy days;
 c) Cross Border / FIR/UIR Boundary Operations;
 d) night routes;
 e) direct routes;
 f) free routes;
 g) pre-defined airspace scenarios.
3.3.3 **ASM over the High Seas**

3.3.3.1 The provisions described hereunder are complementary to the EUROCONTROL Specification for the Application of the Flexible Use of Airspace (FUA) (Chapter 3.3).

3.3.3.2 The basis of the agreement reached on the Concept of the Flexible Use of Airspace by the ECAC States is that, it should not be in contradiction with the Chicago Convention and its Annexes or the United Nations Convention on the Law of the Sea. Access to high seas airspace cannot be denied, nor can State aircraft be forced to participate in the application of the FUA concept. Any procedure or agreement developed must not give the operators of State aircraft the perception that their operations could be restricted in any way. Therefore, the procedures and/or agreements must also acknowledge that negotiating the use of the airspace is the ideal; however there would be circumstances when only notification of operation would be possible or operational considerations may preclude either negotiation or notification.

3.3.3.3 The procedures in this Handbook are a set of guidelines for ECAC States with regard to the application of the FUA concept over the high seas.

3.3.3.4 As regards airspace reservations, over the high seas only D areas, as introduced in ICAO Annex 2 – Rules of the Air, may be established. In this context it should be noted that such areas are to be established without prejudice to the rights and duties of States under the Convention on International Civil Aviation (Chicago Convention) and its Annexes, or the 1982 UN Convention on the Law of the Sea. However, the States should introduce the flexible management of such D areas to the extent possible and based on the actual use of airspace.

3.3.3.5 The CBA concept as it is described in the present document is applicable in sovereign airspace. For “danger areas” established over the high seas with due regard to ICAO requirements, and used jointly across international FIR/UIR boundaries, the States concerned shall coordinate and establish procedures for allocation and notification in written agreements, reflected as necessary in their respective national AIP.

3.3.3.6 The FUA concept may be employed over the high seas in a manner consistent with the principles used for airspace of sovereign territory. When so applied, it should be recognized that State aircraft of all other States can exercise their right to fly in any airspace over the high seas under the principle of “due regard” as described in the Chicago Convention, (Article 3 a) and d)). However, State aircraft should comply with the ICAO provisions to the extent possible.

3.3.3.7 Civil aircraft and State aircraft operating in accordance with ICAO provisions are required to comply with the provisions of Annex 2 which apply without exception over the high seas. In particular, the provisions of Annex 2, paragraph 3.6.1.1 regarding the requirement to obtain a clearance before operating as a controlled flight, and paragraph 3.6.5.1 regarding the requirement to establish two-way communication with the unit providing air traffic control service, are to be observed.

3.3.3.8 In order to provide added airspace capacity and to improve efficiency and flexibility of aircraft operations, States should establish agreements and procedures providing for a flexible use of airspace including that reserved for military or other special activities. The agreements and procedures should permit all airspace users to have safe access to such airspace. When applicable, such agreements and procedures should be established on the basis of a sub-regional agreement.

3.3.3.9 Similarly, the criteria for the establishment of CDRs and FRA over the high seas are the same as those for CDRs and FRA in sovereign airspace. Until the implementation of the
SCC, the categorisation and subsequent review of CDRs is a ASM Level 1 responsibility. In addition, States should take into account the potential requirement for ASM Level 3 coordination to re-route traffic off a CDR or to avoid a danger area, due to activities over the high seas.

3.3.4 **Early Access to Weekend Routes Process**

3.3.4.1 **General**

3.3.4.1.1 The procedures described in this chapter have been agreed at international level[^5] to facilitate the Early Access to Weekend/Conditional Routes on Busy Fridays during the summer season and are reviewed whenever appropriate in the light of experience gained.

3.3.4.1.2 The Early Access to Weekend (EAW) routes process is based on an overall agreement between participating States for granting access to Busy Fridays, from the first Friday in May to last the Friday in October. Participating States are encouraged to increase the number of Busy Fridays whenever practicable, also outside the specified period.

3.3.4.1.3 The main purpose of the international agreement for EAW routes on agreed Busy Fridays is to grant airspace users access to selected airspace volumes and corresponding CDRs (also on a flight planning level) as of 10.00 UTC on relevant Fridays.

3.3.4.1.4 Even though the following agreed procedures are not applicable to all ECAC States, the agreement reached between participating States should encourage the downstream States to seek continuity in the early usage of weekend routes in their airspace.

3.3.4.2 **Agreed Procedures - International Early Access to Weekend Routes Agreement**

3.3.4.2.1 Each ECAC State wishing to participate in the international agreement set-up to facilitate the EAW process across Europe notifies its decision to NM by a request at existing working arrangements in place. The decision may be supported by a written request and, if deemed necessary by the state, an appropriate AIS publication (e.g. AIP Supplement). This notification will clarify the selected Busy Friday during the summer season and CDRs, if not all, for which early access from 10.00 UTC is granted. The notification could also include additional busy days and related CDRs, if not all, for which early access from 10.00 UTC is granted.

3.3.4.2.2 Consolidated information of Busy Fridays and selected CDRs, if not all, will be provided on the NOP Portal (Strategic web page) at least one AIRAC cycle before summer season. Daily Information on airspace and/or CDR status is notified via AUP/UUP, and it will cover the extended availability agreed within the frame of the EAW arrangements.

3.3.4.3 **Agreed Procedures - Annual Notification of National Differences**

3.3.4.3.1 The AIP Supplement will be published independently by each EAW participating state and should reach the airspace users early enough to help them in preparation of the summer operations. However, in order to provide timely information on EAW, the publication will not be delayed later than one AIRAC cycle before the start of the summer season.

After the publication of all EAW AIP Supplements, EUROCONTROL will consolidate the information on Busy Fridays and CDRs and FRA AMA respectively. This information will be made available on NOP portal.

[^5]: As agreed at the Airspace and Navigation Team (ANT/42), the Airspace Management Sub-Group (ASM-SG) of NETOPS (former ANT) is the international forum to harmonise the discussion and agreement on the Early Access to Weekend/Conditional routes on Busy Days during the summer season.
3.3.4.3.2 If EAW routes or airspace volumes are unavailable in one participating State for one or more of the Busy Friday for the next summer season, the necessary coordination process between the States concerned will be performed through the EAW web-based application on the EUROCONTROL website. Whenever required, a specific coordination arrangement can be put in place (e.g. cross-border CDRs, etc.).

3.3.4.4 Agreed Procedures - Exceptional Deviations

3.3.4.4.1 The HLAPB of the participating States can determine exceptional circumstances in which the early access arrangements for Busy Fridays may be cancelled because of specific needs for civil or military activities.

3.3.4.4.2 Under these circumstances AUP/UUP shall reflect corresponding airspace & route (un)availability. In case a State has published specific AIS notifications (e.g. AIP Supplement) regarding EAW arrangements, a NOTAM informing about this cancellation of early access is to be dispatched 48 hours in advance.

3.3.5 Other Additional Busy Periods Arrangements

3.3.5.1 General

3.3.5.1.1 The procedures described in this section aim at facilitating airspace management processes to address busy military or civil periods other than Busy Fridays.

3.3.5.2 Busy Periods related to Large Military Exercises

3.3.5.2.1 The participating States should communicate to NATO NATMC, through the EAW web-based application on the EUROCONTROL web site, the Busy Days in the summer period to assist in the planning of large military exercises, up to one and a half year in advance (e.g. during late 2010 for Summer 2012).

3.3.5.2.2 Taking due account of this advance notice, national ASM Level 1 military authorities will identify Busy Military Periods, including major national and international exercises which may affect civil traffic in the following summer and which need to be incorporated in the corresponding “Network Operations Plan”.

<table>
<thead>
<tr>
<th>(a) DATES</th>
<th>(b) EXERCISES</th>
<th>(c) AREA INVOLVED</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-25 March 2008</td>
<td>STRONG RESOLVE</td>
<td>Norway & Poland</td>
</tr>
<tr>
<td>5-19 May 2008</td>
<td>ARDENT GROUND</td>
<td>Germany</td>
</tr>
<tr>
<td>6-17 May 2008</td>
<td>ELITE</td>
<td>S Germany</td>
</tr>
<tr>
<td>May 2008</td>
<td>DYNAMIC MIX</td>
<td>W Med/Spain</td>
</tr>
<tr>
<td>18-29 June 2008</td>
<td>CLEAN HUNTER</td>
<td>N Europe</td>
</tr>
<tr>
<td>3-14 September 2008</td>
<td>NATO AIR MEET</td>
<td>S Europe</td>
</tr>
<tr>
<td>October 2008</td>
<td>DESTINED GLORY</td>
<td>E Med/Greece</td>
</tr>
</tbody>
</table>

Figure 8: Fictitious example of busy military periods

In the frame of rolling AUP process the information of this cancellation could be repeated in the national AUP on the preceding Thursday of cancelled Busy Friday.
3.3.5.3 ASM Arrangements for Other Busy Days

3.3.5.3.1 In addition, to increase the effectiveness of airspace use, each State participating in the international EAW process can identify Other Busy Days, for which activation of identified coordinated access to airspace configurations could also be agreed to solve anticipated capacity problems.

3.3.5.3.2 The States concerned should perform any necessary coordination through the EAW web-based application on the EUROCONTROL website or a specific coordination arrangement to agree to a number of Other Busy Days.

3.3.5.3.3 Once the agreement and coordination process regarding Other Busy Days has been completed at ASM Level 1 in early March of each year, the States concerned should provide their AMCs with clear coordination procedures with military authorities and neighbouring AMCs, if required.

3.3.5.3.4 On the day preceding Other Busy Days, the AMCs concerned independently consult their military authorities in accordance with local procedures and adjacent AMC(s), if required, to seek the final agreement for airspace allocation the following day.

3.3.6 Cross Border / FIR/UIR Boundary Operations

3.3.6.1 General

3.3.6.1.1 The intent of Cross Border / FIR/UIR Boundary Operations (CBO) is to establish a process which would encompass activities conducted by one or more States, within an area established across international borders or entirely within the airspace under the jurisdiction of one State.

3.3.6.1.2 The CBO Process would rationalise the requirements for national airspace reservation (TRA/TSA) and/or airspace restriction (D/R) by the allocation and shared use of areas established on both sides of a border (Cross-Border Areas, CBAs), as well as through a shared use of existing, relocated or newly developed TRAs/TSAs, including AMC-manageable D and R areas, entirely established within airspace under the jurisdiction of one State but adjacent to a neighbouring State or States.

3.3.6.1.3 For those States willing to apply Cross-Border / FIR Boundary Operations, formal agreements are necessary in setting up the required cooperation in order to mitigate regulatory and procedural differences. These agreements should cover all relevant legal, operational and technical issues (e.g. sovereignty, defence, operations, environment and search and rescue) and specify one common set of criteria for separation between civil and military flights.

3.3.6.1.4 The framework agreement to be established between the States willing to apply CBO should take into account the following factors:

 a) responsibility and liability for the provision of ATS;
 b) SAR responsibility;
 c) ATS procedures and common language;
 d) SSR code allocation;
 e) type of flight (VFR or IFR);
 f) maximum number of participating aircraft;
g) harmonised coordination procedures and flight plan data exchange;

h) communications;

i) Air Defence notification procedures;

j) common AMC procedures;

k) planning/scheduling procedures, relationship with AMC(s) concerned;

l) activation/deactivation procedures, relationship with ACC(s) concerned;

m) priority rules;

n) ATS occurrences reporting procedures;

o) environmental issues.

3.3.6.1.5 After having established a CBA or having agreed to a shared use of TRA/TSA or manageable D or R areas, according to the guidelines and criteria mentioned above, the States involved should agree on and define clearly the following usage criteria:

a) periods of activity taking into consideration the national holidays of the States concerned;

b) ATS providers allowed to provide ATS associated with the control responsibility and ATC sectorisation;

c) other units (e.g. Air Defence units) allowed to handle traffic in the shared CBA/TRA/TSA or D or R areas;

d) airspace users allowed to use the shared CBA/TRA/TSA or D or R areas and the maximum number of participating aircraft;

e) use of a common language;

f) control procedures, including type of flight (VFR, IFR), SSR code allocation and ATC and/or Air Defence procedures related to shared CBA/TRA/TSA and D or R areas, for:
 - flights in evolution;
 - flights transiting; and
 - flights entering/exiting;

g) procedures to be followed by flights operating autonomously within the shared CBA/TRA/TSA or D or R areas (e.g. UAS);

h) separation criteria between the traffic in the shared CBA/TRA/TSA or D or R areas, and the traffic crossing it; or, between the traffic inside the areas and the traffic circumnavigating them;

i) mandatory ATS means (i.e. primary radar, secondary radar, frequency coverage, etc.);

j) mandatory coordination means (i.e. direct controller-controller communication, exchange of radar and flight plan data, etc.);

k) contingency procedures in the event of disruption of ATS; and

l) ASM Level 2/3 to ASM Level 1 ATS occurrence reporting procedure.
3.3.6.2 Cross Border Areas (CBAs)

3.3.6.2.1 When the possibility exists to rationalise the requirements for national TRAs/TSAs as well as D and R areas on both sides of a border, the neighbouring States concerned should endeavour to optimise the airspace and route structures in the area around the border by establishing a “Cross-Border Area” (CBA). This can be achieved by establishing such CBAs in the form of either TRAs/TSAs, or AMC-manageable D and R areas, with, where applicable, associated CDRs so as to benefit both GAT and OAT operations without any boundary constraints.

3.3.6.2.2 It is expected that the CBA would be utilised by users from more than one State. To resolve the problem of the allocation of this airspace between potential users, the AMCs in charge of such allocation should have an unambiguous set of priority rules defined at ASM Level 1 by agreement between the respective national administrations and as set out in the agreement.

3.3.6.2.3 The framework agreement to be established between the States concerned, should, apart from the general factors listed in 3.3.6.1.4, also need to take into account the following specific factors addressing CBA issues:

 a) ATS delegation;
 b) airspace classification;
 c) ATC sectorisation;
 d) separation criteria between civil and military flights; and
 e) possibility of subdivision of CBAs.

3.3.6.2.4 After having established a CBA according to the guidelines and criteria mentioned above, the States involved should agree on and define clearly the CBA usage criteria and consider a common airspace classification, if applicable, in accordance with ICAO provisions.

3.3.6.2.5 A common AMC process including the planning of reservations, the airspace request and allocation and the activation/deactivation procedures, should be established between the AMCs concerned according to an agreed priority rule and an associated time table. In order to harmonise the AUP/UUP publication and simplify the relationship with the NM, the Lead AMC Concept should be applied.

3.3.6.3 TRA/TSA and D or R Areas Sharing

3.3.6.3.1.1 When the possibility exists to rationalise the use of national TRAs/TSAs, including AMC-manageable D and R areas, by sharing them between users from more than one State, the States concerned should endeavour to establish the necessary agreements allowing such airspace sharing with the aim to make the best use of the available airspace.

3.3.6.3.1.2 The national AMC responsible for such area(s) should be designated. Allocation of those TRAs/TSAs, or AMC-manageable D and R areas that are shared between multinational users should be supported by a set of unambiguous priority rules laid down in ASM Level 1 agreement.

3.3.6.3.1.3 Common procedures for Cross-Border / FIR/UIR Boundary Operations to share CBAs, TRAs/TSAs and D or R areas between two or more adjacent States should be developed offering the opportunities to States willing to merge their national collaborative airspace planning process in order to apply common airspace management rules (e.g. Functional Airspace Block).
3.3.6.3.1.4 The framework agreement between the States concerned should, apart from the general factors listed under 3.3.6.1.4, consider, as a minimum, the following specific factors:
 a) designation of a Lead AMC, if so required;
 b) OAT transit procedures;
 c) diplomatic clearances procedure;
 d) responsibility and liability for ATS provision;
 e) separation criteria between civil and military flights;
 f) opening/closure information dissemination (e.g. shared airspace data repository);
 g) awareness of airspace classification (if applicable).

3.3.6.4 Cross-border CDRs

3.3.6.4.1 In order to facilitate aircraft crossing national borders, states will establish Cross-Border CDRs according to the cooperative planning process taking place within the specialised EUROCONTROL/NM Route Network Development Sub-Group (RNDSG).

3.3.6.4.2 This coordination process between the neighbouring States will allow harmonising to the greatest possible extent the categorisation, flight levels and intended availability of such CDRs.

3.3.6.4.3 As the CDR will extend through the area of responsibility of more than one AMC, a common AMC process should be established allowing AMCs concerned to delegate their responsibility for the coordination of the harmonised availability of an individual CDR on a route by route basis to a Lead AMC.

3.3.7 ATS Route Network and other Airspace Structures Development

3.3.7.1 ATS route network and other airspace structures development should be considered as a set of enablers for the successful definition and application of airspace configurations.

3.3.7.2 The planning and establishment of Free Route Operations Airspace, permanent ATS routes and CDRs, including OAT Transit Routes System, as well as of military reserved or segregated airspace (TRA/TSA/CBA) is conducted nationally and internationally within the framework of an European coordinated and cooperative process.

3.3.7.3 The optimisation of the existing and future ATS route and other airspace structures network planning, including Free Route Operations Airspace is initially made through the national ASM Level 1 coordination process.

3.3.7.4 This optimisation should be done in compliance with the cooperative planning process taking place within the specialised NETOPS Team sub-groups.

3.3.7.5 The annual national airspace review including the use of Free Route Operations Airspace, CDRs and CDR/routeing scenarios and of military training areas (TRA/TSA/CBA) has to take place after each summer season so as to take into account shortcomings identified in the course of the continuous management of traffic flows. The proposals made for the resolution of these shortcomings must be coordinated through the NETOPS Team structure (see Figure 9 and Annex 2). Particular attention should be paid to the consistency with the ATFCM process.
Figure 9: Annual rolling process for short term improvements to the ATS route network
3.4 NATIONAL AND INTERNATIONAL PROCESSES AT ASM LEVEL 1 FOR THE AIRSPACE ALLOCATION AT ASM LEVEL 2

3.4.1 The CDR Concept and the Temporary Airspace Allocation (TAA) Process

3.4.1.1 The pre-tactical management of airspace by AMCs at ASM Level 2 is performed through the allocation of CDRs and/or reserved/restricted areas, taking into consideration relevant pre-defined airspace scenarios, if any, in close coordination with FMPs and NM in order to carry out the collaborative ASM/ATFCM process. Ideally this coordination should be achieved through the integrated AMC/FMP function.

3.4.1.2 With the AUP/UUP publication, AMCs can declare CDRs available or unavailable for flight planning, both on a daily basis and in accordance with the priority rules and negotiation process established at ASM Level 1.

3.4.1.3 Due to operational or weather considerations, after adequate coordination with FMPs and NM and in accordance with ASM Level 1 guidelines, an AMC can amend the published D-1 AUP decision concerning the availability of a CDR and/or the allocation of reserved/restricted areas by the publication of UUPs. The change could also be a new ad-hoc request for airspace allocation of AMC-Manageable Areas. This requires consideration of various issues, including:

a) the control of access into the airspace in which the AMC-Manageable Areas is situated;

b) any adverse impact on the ATFCM measures in force;

c) any significant effect on GAT/OAT which had planned to fly or operate through the airspace on the basis of related information in the EAUP/EUUP;

d) the possible impact on ATS airspace classification;

e) any adverse impact on implemented pre-defined airspace scenarios.

3.4.2 Free Route Operations Airspace and the Temporary Airspace Allocation (TAA) Process

3.4.2.1 The pre-tactical management of Free Route Operations Airspace operational requirements at ASM Level 2 is performed through the allocation of reserved/restricted areas, taking into consideration relevant pre-defined airspace scenarios, determination of entry/exit point pairings and any pre-determined routeings in close coordination with FMPs and NM in order to carry out the collaborative ASM/ATFCM process. Ideally this coordination should be achieved through the integrated AMC/FMP function.

3.4.2.2 Due to operational or weather considerations, after adequate coordination with FMPs and NM and in accordance with ASM Level 1 guidelines, an AMC can amend the published D-1 AUP decision concerning the status of reserved/restricted areas by the publication of UUPs. The change could also be a new ad-hoc request for AMC-Manageable Areas allocation. This requires consideration of various issues, including:

a) the control of access into the airspace in which the TRA/TSA is situated;

b) any adverse impact on the ATFCM measures in force;

c) any significant effect on GAT/OAT which had planned to fly or operate through the airspace on the basis of related information in the EAUP/EUUP;

d) the possible impact on ATS airspace classification;

e) any adverse impact on identified pre-defined airspace scenarios.
3.4.3 **Establishment at ASM Level 1 of Priority Rules and Negotiation Process for the Pre-tactical Allocation of Airspace by AMC**

3.4.3.1 In order to avoid a lengthy negotiation process of civil/military and military/military conflicting requests ASM Level 1 is to establish priority rules.

3.4.3.2 ASM Level 1 should establish clear priority rules when CDRs request conflicts with the associated TRAs/TSAs.

3.4.3.3 Priority rules should be established with the aim to promote predictability and stability in airspace planning and allocation. Consequently, activities planned well in advance with prior coordination should normally have priority over any short-term requests.

3.5 **NATIONAL AND INTERNATIONAL PROCESSES AT ASM LEVEL 1 FOR THE AIRSPACE USE AT ASM LEVEL 3**

3.5.1 Due to operational or weather considerations, civil and/or military ATS units and/or controlling military units can, after adequate coordination and in accordance with ASM Level 1 guidelines, amend at ASM Level 3 the published AUP/UUPs decisions concerning the availability of a CDR or the allocation of a TRA/TSA. This would equally apply to the airspace availability in respect of Free Route Operations Airspace. The change could also be a new ad hoc request for airspace allocation. This requires consideration of various issues, including:

- a) the control of access into the airspace in which the TRA/TSA is situated;
- b) any adverse impact on the ATFCM measures in force;
- c) any significant effect on GAT/OAT which had planned to fly or operate through the airspace on the basis of related information in the AUP/UUPs;
- d) the possible impact on ATS airspace classification;
- e) any adverse impact on identified pre-defined airspace scenarios.

3.5.2 The simultaneous use of a CDR and the associated TRA can occur when the nature of activity within the TRA and the existence of efficient ASM Level 3 civil/military coordination facilities permit the safe use of CDRs through the active TRA.

3.6 **ASM SOLUTIONS**

3.6.1 **Objectives**

3.6.1.1 The main objectives of the ASM Solutions are to deliver a better flight efficiency. In this respect, the current ASM processes and procedures related to a particular TRA/TSA or a group of them need to be reconsidered, both in their design and associated airspace planning and allocation processes and procedures. The enhanced ASM processes will consider various levels of flexibility, either in time or in spatial location (vertical or horizontal), that are available by the planned civil or military flight operations.

3.6.1.2 The final objective of the ASM Solutions development is to provide concrete and consistent solutions for each identified hot-spot, i.e. an interactive civil-military solution.

3.6.1.3 In order to have the process for ASM solutions running a number of enablers need to be put in place, namely:

- Concept of utilisation
- Supporting tools
3.6.2 Scope

3.6.2.1 The task of identification and development of ASM Solutions is focused at improving the ASM/ATFCM/ATS processes and procedures for local (Hot-Spots) and sub-regional level (interactive sub-regional scenarios) in the entire ECAC area through interactive civil-military solutions.

3.6.2.2 The ASM solutions are focused on improvements of flight efficiency of the current route network, promoting a better utilisation of existing CDRs and/or, in a FRA environment, promoting a more efficient utilisation of areas volumes.

3.6.3 Process Description

3.6.3.1 The ASM solution process is aiming at delivering flight efficiency solutions considering all existing CDRs/areas in order to identify the shortest route (in FRA environment between way points) used by at least one AO for FPL purposes.

3.6.3.2 The utilization of the shortest filed FPL as “best practice” aims to define concrete options not limited by other factors (e.g. RAD restriction) that could hamper the utilization of an “ideal” shortest scenario.

3.6.3.3 ASM solutions are a collaborative process. It is based on the partnership between ANSPs, AOs and military collaborating to make the best decision acceptable to all parties.

3.6.3.4 The ASM solutions process comprises three main phases: identification of network problems, generation of re-routing options and delivery of a pre-defined airspace scenario describing the optimal solution.

3.6.3.5 Apart from the identification of network problems, the other two phases are characterized by the following actions:

- identification of the shortest route that contains CDRs segments and/or DCTs passing through areas for each city pair,
- assess the ASM issues like CDRs and/or DCTs synchronised availability,
- develop pre-defined airspace scenarios applicable for specific days.

3.6.3.6 The shortest route involving several CDR segments and/or DCTs passing through areas of the corresponding city pair is selected and all the flights on this city pair are assigned to take this shortest route.

3.6.3.7 Next step in the preparation of ASM solutions deployment, is drafting specific procedures concerning coordination between participating actors. It is about the description of roles and tasks of those involved in the decision making process of applying ASM solutions for network management.
3.6.4 **Methodology**

3.6.4.1 **Data**

The assessment is carried out considering data (traffic demand, ATFM measures, sector configurations, pre-defined airspace scenarios, CDRs/areas availability) for a reference period, normally not affected by specific events.

Information on CDRs/areas availability for the selected reference period is derived from relevant EAUP/EUUP.

3.6.4.2 **Selection criteria**

For the selection of hot spot or city pairs to improve, a number of criteria should be used such as:

- The existence of CDRs segments or crossing areas in the FPL;
- Significant route extension compared with the “best option”, e.g. more than 20 NM;
- Flight extension mostly for en-route section (avoid extensive arrival/departure situations);

3.6.4.3 **Assessment methodology**

In order to identify feasible situations for the application of ASM solutions, the following methodology is recommended:

- Search for the flights with the shortest planned route for each city pair using the selected traffic sample for the reference period;
- Check which of these shortest flights have at least one CDR or crossing area in their planned route;
- For each city pair assess the CDR/area availability requirements if all the flights on that city pair would plan the shortest route;

3.6.4.4 **Supporting Tool**

The EUROCONTROL System for traffic Assignment and Analysis at a Macroscopic Level (SAAM) is one of the tools that could be used in the developing potential ASM Solutions. Additional NM developed applications could be used for the traffic analysis (comparison of FPL length, comparison of CDRs opening time, etc.). Records of ATFM measures should be used to check the impact on the ASM solutions selected. Local tools could also be utilised, as appropriate.

3.6.5 **Milestones**

3.6.5.1 **Identification of potential ASM Solutions**

Following the above mentioned methodology, traffic flows should be selected as potential candidate for the application of ASM solutions. For each of them a better utilisation of CDRs/areas, with potential improvements in flight efficiency (e.g. time and distance savings, taking into account RAD restrictions, pre-defined airspace scenarios and sectors load), should be spotted for a number of users, in comparison with the “best practise” identified.

3.6.5.2 **Internal coordination with NM**

The selected solutions should be coordinated with Network Operations Unit in order to verify the possible existence of additional issues deriving from the current modus operandi, and to confirm their feasibility.
3.6.5.3 Coordination with States/ANSPs

In those cases NM is proposing ASM Solutions, they should be coordinated with States/ANSPs existing working arrangements (ASMSG/RNDSG) and/or bilaterally in order to achieve their commitment for further bilateral co-ordinations with those involved. The conclusion of the coordination with States/ANSPs involved should consolidate the list of ASM solutions to be implemented and the finalisation of the procedures to apply.

3.6.5.4 Coordination with AOs

With the selection of the agreed ASM solutions, interested AOs will be approached to present them the identified benefits for each ASM solution and the procedures planned to be implemented for the summer. This coordination will be used also to better understand their modus operandi for FPL process and additional issues related to their operations that might limit the utilisation of ASM solutions.

3.6.5.5 Time-related

The finalisation of the coordination with all stakeholders involved should define the target date for the implementation of the ASM solutions. In general terms, it should be announced by their publication on the NOP Portal. In case of agreement to modify the airspace structures, prior AIS notification should be considered according to Annex 15 requirements.

3.6.5.6 Live trial and Monitoring

Normally the implementation of identified the ASM solutions should require a validation through live trials. In this case monitoring mechanism should be foreseen as well as a final report in order to identify ASM solutions eligible for a permanent implementations as well as agreement for the expansion of ASM solution application to other traffic flows, with possible utilisation of other selection criteria. In order to run any live trial a preliminary safety assessment is required and the final report should describe the outcomes safety related.

7 AIM could be used to advise AOs about the publication of ASM Solutions on the NOP Portal.
This page intentionally left blank
SECTION 4

PRE-TACTICAL AIRSPACE MANAGEMENT (ASM LEVEL 2)

4.1. GENERAL

4.1.1. Pre-Tactical ASM at ASM Level 2 consists of the day-to-day management and temporary allocation of airspace through national or sub-regional AMCs.

4.1.2. The allocation of airspace is the prerogative of the State for the airspace under its sovereignty and/or the airspace under its jurisdiction. A Contracting State accepting the responsibility of providing ATS over the high seas or in airspace of undetermined sovereignty, may apply the ICAO Standards and Recommended Practises (SARPs) in a manner consistent with that adopted for the airspace under its jurisdiction.

4.1.3. States establish and authorise joint civil and military AMCs to manage their airspace on a daily basis. National guidelines on ASM take into account their various national and international arrangements. States authorise AAs and FMPs/ACCs to make requests for airspace allocations to the AMC, to participate in the negotiation and coordination process initiated by the AMC, and to utilise allocated CDRs, TRAs/TSAs, CBAs and other allocated airspaces as appropriate.

4.1.4. Whenever possible the AMC and FMP functions should be integrated.

4.1.5. The HLAPB determines the degree of discretion and authority of the AMC. AMCs are vested with the appropriate authority so as to minimise the need for referrals to higher authority. Sub-regional AMCs, established by two or more States (e.g., FAB), have the responsibility for pre-tactical airspace management over international border(s) and/or FIR/UIR boundary (boundaries) in the airspace of the States involved.

4.2. AIRSPACE REQUESTS - APPROVED AGENCIES (AAs)

4.2.1. Units that represent entities (e.g. squadrons), which wish to utilise TRAs/TSAs, CBAs, or R and D areas that are suitable for management/allocation by the AMC, are identified as AAs and are authorised by the national authority concerned. AAs are permitted to negotiate for airspace to be allocated by the AMC. When AAs are submitting airspace requests to the AMC, the safety should be paramount.

4.2.2. AAs are required to:

a) plan submission of airspace use activities in advance so as to be able to notify their needs for airspace to the AMCs on the day before the activity;

b) submit to the AMC, on the day before the proposed activity (D -1), requests for airspace utilisation and allocation;

c) ensure, on the day of the activity, that the airspace usage is in accordance with the AMC's airspace allocation;

d) cancel any airspace allocation which is no longer required. Information is forwarded to the AMC for the promulgation of an UUP, and to the relevant ACC in accordance with national procedures;

e) change previously promulgated airspace allocation by coordinating with AMC the promulgation of an UUP;

f) submit a new request for airspace allocation to the AMC for the promulgation of an UUP.
4.2.3 The requests for airspace use could be presented as a block of airspace required during a specified period of time with the possibility of moving the request in terms of time and flight levels. An example is presented at Figure 10.

![Figure 10: Example of TRA/TSA Request](image)

4.2.4 In case of a modular design of the airspace, the request should contain only the appropriate number of modules required for the activities concerned.

4.2.5 The requests should cover a 24H period of time.

4.3. **CDR REQUESTS - ACCs/FMPs**

4.3.1. Requests for CDRs are normally based on capacity needs identified by the FMPs/ACCs and in coordination with NM in the pre-tactical ATFCM phase.

4.3.2. The FMPs/ACCs concerned should in coordination with the NM:
 a) assess the traffic forecast for the day of operations;
 b) identify areas of insufficient ATC capacity;
 c) agree on the requests for CDR2;
 d) agree on the most appropriate sector configuration;
 e) agree on the need for ATFCM measures.

4.3.3. As a result of the pre-tactical ATFCM coordination process and the consideration of all relevant ATC factors such as sector capacity, equipment status, operational constraints and staff
availability, the FMPs/ACCs submit a request for the activation of CDRs2 to the AMCs concerned. CDR2 requests are presented together with traffic forecasts showing the expected capacity shortfall. Examples of such CDR requests and traffic forecasts are presented respectively at Figure 11 and 12.

Figure 11: Example of CDR Request

Figure 12: Example of GAT Traffic Forecast
4.3.4 To improve the coordination efficiency, AMC and FMP functions should be integrated whenever possible.

4.3.5 If the traffic demand does not require the availability of CDR2, FMPs/ACCs cancel the CDR2 request and advise the AMC.

4.4. RESTRICTED/DANGER AREAS - NOTIFICATION OF REDUCED ACTIVITY

4.4.1 States may require designated airspace managers or users of some R and D areas to notify to the relevant AMC on their planned activities for the following day. This notification permits the AMC, as a focal point, to be aware of all airspace utilisation and permits the publication by the AMC of any reduced period of R and D area activity in the AUPs/UUPs list ‘DELTA.

4.5. AIRSPACE MANAGEMENT CELLS (AMCs) - AIRSPACE ALLOCATION

4.5.1 General

4.5.1.1 AMCs operate in accordance with the airspace allocation priorities, negotiation rules and protocols established by the HLAPB. National or sub-regional AMCs act as ASM Level 2 national and international ASM focal points, improve civil-military and international coordination and manage the airspace to ensure its flexible use.

4.5.1.2 AMCs conduct Pre-Tactical ASM Level 2 airspace allocation and management operations in a decisive, timely and efficient manner and resolve conflicting airspace requests and ASM Level 2 problems (see Figure 13). AMCs in the ECAC States should have their minimum levels of authority harmonised, which will allow them to perform effective ASM Level 2 functions. Nevertheless, such harmonisation does not prevent States from delegating greater authority to their AMCs and permitting them to perform additional functions.

4.5.1.3 Major events planned well in advance, such as large scale military exercises, which require additional segregated airspace, are subject to ASM Level 1 coordination; subsequently, these activities will be notified by AIS publication. However, depending on the State's ASM organisation, additional coordination may take place at AMC level in order to improve the efficiency of the airspace utilisation.

4.5.1.4 Any airspace plan information available from D-6 to D-2 is published via relevant DRAFT AUPs in order to improve awareness as well as to trigger coordination with interested stakeholders, if necessary. In specific, the existence of pre-defined airspace scenarios could highlight conflicting requests at an earlier stage, facilitating the coordination among stakeholders. After the AMC has completed the allocation process through the promulgation of the AUP at D-1, modification of the airspace allocation might be necessary. Modifications of the airspace allocation are effected by the AMC through an Updated AUP (UUP) and consist of any cancellations, changes or new requests.
4.5.2 **Responsibilities**

4.5.2.1 AMCs are responsible for the conduct of day-to-day ASM Level 2 airspace allocation and management as specified in the EUROCONTROL Specification for the Application of the Flexible Use of Airspace (FUA) (L2-AAOP-01-01),

Quote:

In particular, the airspace management cells:

a) Shall act as the national and, where appropriate, as international day-to-day focal points for ASM Level 2 coordination;

b) Shall collect and analyse all Airspace Requests which may require temporary airspace segregation, including airspace allocation decisions taken at ASM Level 1 in respect of major military exercises, existing pre-defined airspace scenarios, air shows etc.;

c) Shall analyse the CDR availability requests together with the traffic demand, anticipated ATC capacity problems and expected delay information received from the FMP;

d) Shall resolve conflicting requests for reserved/restricted areas and CDRs utilising all relevant information;

e) Shall resolve conflicts between incompatible or conflicting airspace requests by the application of approved priorities, re-negotiation, rescheduling or segregation;

f) Shall coordinate with adjacent AMCs the harmonised availability of “cross-border” CDRs;
g) Shall respond to any additional request for assistance by the Single Central Unit for Flow Management, the ACC/FMPs and other Approved Agencies or matters arising from major ATS routes inconsistencies or unexpected events;

h) Shall decide on the allocation of national reserved/restricted areas and CBAs, after completion of the collation, coordination, analysis, negotiation and resolution process;

i) Shall make CDR2 available in accordance with established procedures and for a minimum time of one hour (1H), but with no limit when it is the extension of the availability of the same route with CDR1 status;

j) Shall decide in accordance with criteria established at ASM Level 1 on the provisional unavailability of CDRs1 to be handled in real time at ASM Level 3 in conjunction with the notification of activity in associated TSA(s)/TRA(s) and/or AMC-Manageable D and R area(s);

k) Should promulgate available airspace plan information by publishing the relevant DRAFT AUP from D-6 to D-2. It covers the period between 0600 hrs of the reference day to 0600 hrs of the day after (D 0600 hrs to D + 1 0600 hrs). This information is published on the NOP Portal, according to the day of publication;

l) Shall promulgate the airspace allocation by transmitting the D-1 AUP to adjacent AMCs and to AAs, including ACC/FMPs and to the NM. The AUP is published in a common format, as soon as possible, and by 1400 hrs UTC Summer or 1500 hrs UTC Winter, at the latest, to cover the period between 0600 hrs the next day to 0600 hrs the day after (D 0600 hrs to D + 1 0600 hrs);

m) Shall collect and analyse more up-to-date information on the day of operation from AAs concerning the cancellation of reserved/restricted areas and/or associated FUA/EU restrictions already published in the current D-1 AUP;

n) Shall promulgate, if necessary, UUPs containing additional bookings, deletions of reserved/restricted areas and/or associated FUA/EU restrictions during the period of validity of the current AUP. The procedures described in 4.8 define the lead time required between the release of the UUP and the actual start of any airspace structures and/or FUA/EU restrictions changes provided by the UUP.

o) Shall participate in a post analysis of airspace allocation;

p) Shall conduct, where authorised, some Level 3 co-ordination tasks.

(End quote)

Note 1: The common format referred to k) is described in detail in Section 6.

Note 2: The process referred to n) is different, as described under 4.8.3.

4.5.2.2 When integrated, the responsibilities of the AMCs (listed above) and those of FMPs are combined in order to achieve a consistent and more effective collaborative ASM/ATFCM decision making process resulting in the coherent local network assessment and subsequent proposals (AUP, UUP, sector configuration, request for ATFCM regulation, etc.).

4.5.2.3 According to criteria established at ASM Level 1, the publication of CDRs1 unavailability known or decided at pre-tactical level, is to be promulgated for information to national AAs and ACCs as well as AOs concerned for FPL process through national AUPs /UUPs in the list “BRAVO” of routes unavailable for flight planning.

4.5.2.4 In case of the unavailability information is only for AAs and ATS units and are handled at ASM Level 3 which then does not require flight planning actions by AOs the information described in AUP/UUP will be distributed to them not via CIAM but other local means of notification.
4.5.2.5 CDR1 unavailability are daily published in national AUP/UUPs in the list “BRAVO” of Unavailable CDR1 and ATS Routes and promulgated in the EAUP/EUUP via NOP Portal and eAMI through B2B service. It remains a State responsibility to decide whether an AIS notification (e.g. NOTAM) is required in addition. In this case, State is responsible to ensure consistent information.

4.5.2.6 AMCs should be provided with adequate system support to be able to perform the assessment of airspace allocation requests received in order to facilitate their decisions on final airspace allocation.

4.5.2.7 The AMC should be provided with communications equipment required to facilitate communication/coordination with all appropriate partners (AAs, FMPs, NM and other AMCs).

4.5.2.8 In addition, the communication with NM is performed (e.g. via CIAM), which enables the AMC to promulgate AUP/UUPs and allows NM to publish EAUP/EUUP on the NOP portal and post on eAMI server.

4.5.3 **Lead AMC Concept**

4.5.3.1 The lead AMC concept should be applied whenever required for operational reasons within the scope of CBO or any interdependency between neighbouring States including CDR/ATS routes affected by the activation of areas in the AoR of the Lead AMC.

4.5.3.2 The lead AMC concept is based on the delegation of AMCs' responsibilities for the coordination of CBA(s) allocation and/or harmonised availability of CDR(s)/ATS on a route by route basis. It should result in harmonising the AUP/UUPs promulgation process and having a single point of contact for the coordination with NM.

4.5.3.3 The lead AMC concept should be established according to agreed priority rules and an associated time table.

4.5.3.4 An AMC Coordination LoA template is available as a set of guidelines for the development of the ECAC States AMC agreements. The contents of all international AMC LoAs are the responsibilities of the States involved.

4.6. **EXTENDED HOLIDAY PERIOD AND SPECIAL EVENTS**

4.6.1 When military operations are foreseen to be significantly reduced e.g. during a long holiday period, States should publish relevant airspace & route availability information via AUP/UUP.

4.6.2 In addition to that, or in case AUP/UUP is not used, states, at their discretion, may publish relevant information in their AIP or through appropriate AIS publications (e.g. NOTAM – Figure 14). In case of NOTAM, a pre-notification period of 7 days is required.
4.6.3 In case of cross border interdependency between the neighbouring States, the affected routes and times will be coordinated through the Lead AMC or other appropriate bilateral arrangements.

4.6.4 In those cases when special events require an extended unavailability of CDRs, AIS notification should be used to properly notify, according to ICAO provision, the establishment of temporary reserved/restricted areas with associated EU restrictions and corresponding routes unavailability as appropriate. The daily notification, whether AMA, NAM or CDRs unavailability, will be ensured via EAUP. The AIS notification, e.g. NOTAM, should contain description of the area/FBZ, including ID codes, information of established EU restriction, routes affected as appropriate, as well as the reference to EAUP for the daily notification of areas activation, with/without associated EU restrictions, and unavailable routes as appropriate. More details on the EU IDs and their publication are provided in paragraphs 4.8.4.6.5 and 6.1.5.7.

4.6.5 The details of the area and the associated EU restriction are inserted in the CACD in order to allow their management via AUP process. In case of NAM, the area and associated EU restriction will be automatically retrieved by CACD for EAUP publication according to their default conditions. In case of AMA, local AMC will daily notify their activation via AUP.

4.7. INTERNATIONAL FUNCTIONS

4.7.1. Network Manager (NM)

4.7.1.1 The effective implementation of the FUA Concept requires that AMC airspace allocations are promulgated in an efficient, timely and accurate manner. The ECAC States have recognised the need for a central ASM Level 2 airspace management function, performed by NM, as described in the Commission Regulation (EU) 677/2011 of 7 July 2011.

4.7.1.2 In order to achieve compliance with the requirements described in the EUROCONTROL Specification for the Application of the Flexible Use of Airspace (FUA) (L1-APPC-01-02, L1-APPC-03 and L1-APPC-03-01), a written agreement or arrangement should be signed between NM and AMCs. Annex 11 provides a standard LoA to be used for this purpose.

4.7.1.3 The proposed LoA also contains a description of contingency procedures to be applied between NM and each AMC in order to ensure the publication of all AUPs required by the CIAM system in order to publish the EAUP on the NOP portal. As UUPs are not compulsory, no specific contingency procedures are foreseen unless required by States; in this case the LoA should provide a description of these specific procedures.
4.7.1.4 The NM collects and analyses draft D-1 AUPs/UUPs in order to perform network assessment. The information available through DRAFT AUPs published from D-6 to D-2 could also be used to perform network assessment if relevant. The network assessment evaluates the impacts on any relevant pre-defined airspace scenarios⁸. Whenever required, NM coordinates with relevant AMCs and/or FMPs to make proposals taking account of the network assessment. Based on the identification of specific hotspots and run simulations, NM could also propose the implementation of pre-defined airspace scenarios to relevant AMCs before the preparation of draft AUPs.

4.7.1.5 Based on the final decision by AMCs, NM collects, consolidates the D-1 AUP and UUPs, and publishes European AUP/UUP on NOP portal and Airspace Management Message (eAMI) for those using B2B service. The publication of information related to the reserved/restricted area and/or associated FUA/EU restriction plans will be subject to the signature of the LoA described in 4.7.1.2, otherwise will be available with restricted access only to those authorised. In particular, the NM does the following:

- collects, collates and analyses the D-1 AUPs and UUPs;
- detects any remaining lack of continuity in “Cross-Border” CDRs availability and publish (NOP portal and eAMI) only those CDRs that are commonly accessible on both sides of the FIR/UIR boundary;
- after coordination with AMCs has been concluded, compiles EAUP/EUUPs and eAMI with the list of the available CDR2s. Additionally, the EAUP/EUUPs and eAMI contain information on CDR1s (or portions thereof), permanent ATS routes or SIDs/STARs unavailable for flight planning as well as AMA/NAM activations relevant for flight planning;
- publishes by 1500 UTC Summer and 1600 UTC Winter the EAUP on the NOP portal and eAMI to inform those using B2B service;
- publishes EUUP whenever required, according to the procedures described in 4.8.3 and 4.8.5;
- ensures that information on airspace status is taken into account within NM operations.

4.7.1.6 The NM is authorised by the ECAC States to promulgate the decisions/information concerning national airspace.

4.7.1.7 The national/sub-regional AMCs are responsible for the airspace allocation. The NM may coordinate with specific AMCs/FMPs to resolve ATC capacity problems.

⁸ Technical solutions for the pre-defined airspace scenario management are not yet available.
4.7.2. **Aircraft Operators (AOs) FUA Responsibilities**

4.7.2.1. **General**

4.7.2.1.1. In order to take advantage of available CDRs or available airspace in FRA environment, AOs are required to submit their flight plans taking into account the latest available information. Flight plans should include route changes and the use of CDRs pertaining to a particular flight. For Free Route Operations Airspace the flight plan should include the flight trajectory. They should be duly notified to the appropriate agencies through the “Integrated Initial Flight Plan Processing System” (IFPS) and made available to the pilot-in-command.

4.7.2.2. **CDRs1**

4.7.2.2.1. CDRs1 are plannable as permanent ATS routes during the times published in AIPs. In the event of a short notice unavailability of a CDR 1, aircraft will be tactically handled by ATC. Aircraft operators should consider the implications of such a possible re-routing and/or use of the alternate ATS routes published for each CDR 1 in the “Remarks” column of the AIP.
4.7.2.2 Any CDR1 unavailability for flight planning is published in the AUP/UUP and notified to the operators by EAUP/EUUP, via NOP portal and eAMI for those using B2B service. In such case any flight plan which uses the CDR1 portion during the affected period is to be cancelled or changed in accordance with the procedures laid down in the IFPS User’s Manual. It remains a State responsibility to decide whether an AIS notification (e.g. NOTAM) is required in addition. In this case, State is responsible to ensure consistent information. The most appropriate UUP should be used to publish the cancellation of the any CDR1 unavailability from list “BRAVO”. If any NOTAM has been published, it is a State responsibility to issue a new NOTAM to align the information with the UUP.

4.7.2.3 CDRs2

4.7.2.3.1 For cases where the SCC is not yet implemented, flights on CDRs2 can only be planned when the CDRs are made available through AUP/UUP. In this respect, the UUP could also notify the non-availability of CDR2 declared available in AUP and/or previous UUPs. The CDR2 non-availability is notified by deleting the (available) CDR2 from the list “ALPHA” of previous AUP/UUP and notified to the AOs by EAUP/EUUP, via NOP portal and eAMI for those using B2B service. AOs should also refer to national AIPs and to ATFCM Notification Messages (ANMs) for additional information regarding the specific utilisation of available CDRs2.

4.7.2.3.2 Whenever an operator wishes to take advantage of particular available CDRs2 or is required by the ANM to use particular CDRs2, an individual flight plan should be submitted. It should contain in Item 15 the available CDRs2 to be followed. Under these circumstances, any associated RPL shall be cancelled or changed in accordance with the procedures laid down in the IFPS User’s Manual.

Note: The RPL system shall not raise any errors when a route contains a CDR2 portion. This checking of CDR2 routes shall be performed 20 hours before EOBT when the RPL is generated to the IFPS.

4.7.2.3.3 The flight planning systems of aircraft operators or flight planning agencies should be able to process eAMI in AIXM format so as to automatically process the CDRs availability information (B2B service).

4.7.2.3.4 In addition, and in order to assist AOs in assessing the routeing options, an "Aircraft Operator What-if Reroute" function (AOWIR) has been established by the NM (see para. 4.7.5).

4.7.2.3.5 In case of an ATFCM slot that prevents the CDR2 usage, the flight plan is to be changed to use an available ATS route. The revised FPL may result in a revised ATFCM slot.

4.7.2.4 CDRs3

4.7.2.4.1 CDRs3 are published in AIPs as CDRs that are usable on ATC instructions only. Therefore, flights cannot be planned in advance on CDRs3. CDRs3 will disappear when the SCC is implemented.
4.7.2.5 Early Access to Weekend Routes

4.7.2.5.1 In order to take advantage of extra availability of Weekend Routes (see Annex 7), AOs should refer to the ENR part of national AIPs, AIP Supplements where they are published by the States and to the EAUP for details.

4.7.2.5.2 The Early Access to Weekend (EAW) routes are defined as CDRs available for FPL purposes from 1000 UTC on the agreed Busy Fridays (see Section 3 Figure 4). In the exceptional event of a cancellation of the EAW arrangement of all, or part of the weekend CDRs, AOs are notified via EAUP/EUUP. Additionally, by NOTAM two days in advance as appropriate (see 3.3.4.4.2).9

4.7.2.5.3 Identified routes, defined as CDR1 or CDR2 for other Busy Days than Busy Fridays are plannable in accordance with EAUP information. The submission of the individual flight plan is to be made in accordance with the procedures defined in para 4.7.2.3.

4.7.2.5.4 For FRA regions the FPL process will consider the ASM Manageable Areas (AMA) which are concerned by Early Access arrangements. For other AMA not covered by these arrangements the planned routes will take into account the avoidance procedures in place.

4.7.2.6 Flight Planning Procedures around Active Reserved/Restricted Airspace

4.7.2.6.1 The purpose of the following procedures is to enable a harmonised approach for IFR/GAT flight planning around reserved/restricted airspace. These procedures will establish a more transparent process for the Flight plan acceptance by IFPS, both in fixed route and free route environments.

4.7.2.6.2 The FPL Buffer Zone (FBZ) is the associated airspace which may be applied to a reserved/restricted airspace defining the lateral and vertical limits for the purpose of submitting a valid IFR FPL when such areas are active or planned to be active. Flight plans can be filed up to the boundary of the FBZ. The route described in Item 15, is to consider the nominal track between two points according to the great circle shortest route.10

4.7.2.6.3 For the submission of a valid flight plan (for an aircraft not engaged in an activity contained in the reserved/restricted airspace) the FBZ together with the reserved/restricted area represent the totality of airspace to be avoided for flight planning purposes.

4.7.2.6.4 The State AIP, in addition to the publication of the reserved/restricted airspace, includes an associated “FBZ” when applicable.

4.7.2.6.5 The reserved/restricted airspace and the associated FBZ, if required, are to be considered as active simultaneously.

4.7.2.6.6 The size of the FBZ to be applied should be determined in accordance with appropriate national arrangements, depending on the type of activities executed within the corresponding reserved/restricted airspace, taking into consideration, inter alia, the following aspects:

 a) the applicable PBN;

9 In the frame of rolling AUP process the information of this cancellation could be repeated in the national AUP on the preceding Thursday of cancelled Busy Friday.

10 This is the criteria used by IFPS, specifically in case of DCT or free route operations.
b) whether a separation service is provided by the ATS provider in that reserved/restricted airspace or not;
c) the classification of the adjacent airspace
d) the type of ATS services expected;

4.7.2.6.7 When establishing a CBA, a single methodology for the definition of the FBZ should be applied to avoid an increase in the complexity of operations.

4.7.2.6.8 Data management requirements should be considered in an early stage of the design phase to facilitate publication.

4.7.2.6.9 In case of modularity of the reserved/restricted areas, appropriate FBZ should be considered for each module.

4.7.2.6.10 The FBZ vertical limits should be published in accordance with ERNIP Part 1, Chapter 7, paragraph 7.2.8 - Publication of vertical limits.

4.7.2.6.11 Existing restricted/reserved airspace structures should not be extended or decreased as a consequence of applying the procedures above.

4.7.2.6.12 The FBZ promulgation is addressed in chapter 6.1.5.2.

4.7.2.7 Free Route Operations Airspace

4.7.2.7.1 In areas where coordination procedures (including civil/military coordination procedures) and airspace crossing conditions permit, aircraft operators are allowed to flight plan routenings through Temporary Reserved Airspace (TRA).

4.7.2.7.2 In some cases, tactical re-routeing will be given if airspace is not available for crossing. The expected maximum additional length of a tactical re-routeing shall be promulgated through national AIS publications.11

4.7.2.7.3 Except in Free Route Operations Airspace where it is published that tactical re-routeing will be provided, the responsibility is on the originator of a FPL to submit a routeing through Free Route Operations Airspace that avoids active reserved/restricted airspace.

4.7.2.7.4 Within the Free Route Operations Airspace area there will be no limitations on the use of DCT, other than those recommended by ICAO. However, the compliance with the RAD restrictions and Letters of Agreement shall be ensured.

4.7.3. NM Environment Data Base

4.7.3.1. The Environment Database (ENV, currently CACD) is a specific part of the NM Data Base containing all environment data concerning airspace organisation and structure, ACC operational organisation and ATC centre/sector capacities. The CACD is used by the NM IFPS and NM Tactical System (TACT) for the calculation of flight profiles taking account of all airspace constraints.

4.7.3.2. The CACD contains the description of all ATS routes including CDRs and all R, D and AMC-Manageable Areas including TRAs/TSAAs from national civil and military AIPs. The CACD is

11 For example, LFV (Sweden ANSP) published an AIP Supplement where there is the following text: “Traffic on an optional free route but outside any published available ATS-route that conflicts with one or several Swedish active military training areas will, during military exercise hours, normally be vectored around with a total route extension of maximum 20NM.”
updated on an AIRAC cycle basis with AIP related data and for the CDR availability through the EAUP/EUUP.

4.7.3. The CACD provides the CADF and the CIAM used by the AMCs with CACD data for the elaboration of the national AUP/UUPs (see Section 6 Figure 1).

4.7.4. **Integrated Initial Flight Plan Processing System (IFPS)**

4.7.4.1. The IFPS is designed to rationalise the reception, processing and dissemination of GAT IFR flight plan data in the IFPS Zone. The IFPS Zone is the area covered by the ATS facilities of the IFPS Contracting States. The IFPS provides two units (IFPUs) addresses throughout the IFPS Contracting States Zone for all GAT IFR flight plan messages (FPL, RPL) concerning flights which are partly or completely within the IFPS Zone.

4.7.4.2. The IFPS is a part of NM and consists of two IFPUs, which are functionally identical and interconnected by a wide area network (WAN) for data exchange. The IFPS is directly connected to the NM systems, ATS units and AOs.

4.7.4.3. The IFPS checks the flight plans which it receives and corrects them in accordance with the ENV. The correction of flight plans takes place automatically but may also require manual input. During the process of checking and correction, the IFPS extracts the data from the message, including the route description, and calculates a four-dimensional profile for the flight.

4.7.4.4. This checking and correction process of flight plans requires that CACD data are amended with all CDRs and information of areas affecting FPLs that have been notified through the EAUP/EUUP.

4.7.4.5. After the completion of checking, correction and extraction process, the IFPS disseminates the accepted flight plans to the appropriate ATS units and the NM systems for the GAT IFR parts of the flight. By using the calculated flight profile IFPS automatically determines the required addresses for the messages within the IFPS Zone.

4.7.4.6. For flights which include a portion outside the IFPS Zone or which are not GAT IFR, the IFPS does not perform the addressing or dissemination for that section. In this case, the message originator is required to use the IFPS re-addressing function which provides a mechanism to ensure consistency between the flight plan distribution inside the IFPS Zone and the FPL distributed outside the IFPS Zone. Alternatively, AOs can address the corresponding parts of the flight plan message directly to the ATS units involved.

4.7.4.7. At an agreed time parameter before a RPL becomes active, data for the flight are extracted from the RPL Data Base and sent to IFPS which process each RPL as an individual flight plan message and disseminates it to the relevant addressees.

Note: The RPL system shall not raise any errors when a route contains a CDR2 portion. This checking of CDR2 routes shall be performed 20 hours before EOBT when the RPL is generated to the IFPS.

4.7.4.8. RPLs and FPLs filed on CDRs during the accessibility period and FPLs filed on available CDRs in the published EAUP/EUUP are processed by IFPS.

4.7.4.9. In case of non-availability of particular CDRs or area volumes for a flight, IFPS will invalidate the flight plan. The IFPU operator may modify the flight plan in accordance with the agreements between the NM and AOs.

12 For cases where CDRs still exist (where the SCC is not yet implemented).
4.7.5. **Aircraft Operator "What-if" Re-Route (AOWIR) Function**

4.7.5.1 This NM function allows an AO to request a modification of a FPL routeing within the NM system via CHMI and NOP.

4.7.5.2 The user initially makes a series of consultations in order to assess different re-routeing options proposed by the AOWIR.

4.7.5.3 On identifying a better routeing possibility than that initially planned in the original FPL, the user must choose the FPL re-filing option between:

- **Case 1**: allowing the NM/IFPS to directly update the original FPL and associated IFPS messages as if a change message (CHG) had been submitted by the user or,

- **Case 2**: allowing the NM/IFPS to proceed as if an FPL cancellation message (CNL) had been submitted and a new slot booked by the user.

In this latter case the user must then re-file the FPL via AFTN/SITA whereas in case 1 no further flight planning actions are required by the user. (See also NM Users Manual).

4.7.6. **Airspace Data Repository (ADR)**

4.7.6.1 In order to enhance processes at strategic, pre-tactical and tactical level, a rapid access to accurate information (e.g. portal web access) requires a new approach to avoid data inconsistency and to overcome the limitations of dissemination of updated information through messages.

4.7.6.2 These objectives are met through a common pool for the exchange and dissemination of up-to-date and accurate data between airspace users and ATM providers. Depending on the need, data can be retrieved on request or delivered automatically to stakeholders.

4.7.6.3 By having access to common airspace and flight plan data pooling systems, all users involved in ATM benefit from a standard source of consolidated, consistent and up-to-date information and have the possibility to process automatically consistent digital information.

4.7.6.4 Such an airspace data pooling system is the Airspace Data Repository (ADR) (see Figure 16). Any query to the common airspace data repository defines the time parameter of its scope allowing any user to retrieve information related to a present, past or future status.

4.7.6.5 All interested parties have regulated access to stored airspace data granted up to specified levels of information. Such collaborative distributed environment and security mechanisms ensure that sensitive information can be stored, but with a restricted access managed by the information owner.
4.7.7. **Predefined Airspace scenario Data Repository**

4.7.7.1 With NM Release 21.0, an initial Scenarios Repository has been implemented in the NM System for new scenarios created as from May 2017. The scenarios information is stored and used consistently across the different NM tools. Every AIRAC cycle, the FMPs will be provided, with a list of invalid Reference Scenarios to be reviewed, deleted or updated (propose replacement scenarios if needed) via the NOP Portal. Based on this validated feedback information NM will create new scenarios and update existing reference scenarios for future.

4.7.7.2 The publication process is partly automated, consistent with the Dynamic Network Plan (DNP) process. Standardised Maps show automatically the Reference Location of the Scenario, the initial flows and the rerouted flows (including suggested alternative routes) together with all relevant points.

4.7.7.3 Pre-defined airspace scenarios should be considered complementary to the ATFCM scenarios, providing a full set of information to perform an effective network assessment. A common data repository is therefore necessary. A process for the identification, definition, storing and maintenance of the pre-defined airspace scenarios should be established with the involvement of AMCs, similarly to the process in place for ATFCM scenarios.

13 Publication capabilities are expected after the synchronization of NM21.5 and N-CONECT.
14 Technical solutions are not yet available.
4.7.8. **ASM Support Tools**

4.7.7.4 This chapter specifies the system support to ASM/ATFCM process as required by the “EUROCONTROL Specification for the application of the Flexible Use of Airspace” Edition 1.1, GEN-TECH-01 up to GEN-TECH-1015.

4.7.7.5 The entire process is assuming that capability through system support exists in order to ensure an automatic management of the data flow among users.

4.7.7.6 Supporting tools will ease the transfer of data, assist planning, automate the booking of airspace and make possible the assessment of the likely impact of decisions. Adequate system support will ensure the accuracy of the data that are used by the partners in ASM. Data consistency will guarantee that all ATM users are using the same information.

4.7.7.7 ASM supporting tools will support the activation, deactivation, short-term cancellation or amendments to reservations and reallocation of the airspace structures.

4.7.7.8 The ASM supporting tools will provide the real time airspace status on an airspace status display. They may be capable of interfacing with the ATC systems providing them with real time airspace status data.

4.8 **ASM LEVEL 2 TIMETABLE** (see Annex 3)

The application of the procedures described below will continue to allow the tactical management of CDRs and TRAs/TSAs according to the current modus operandi.

Outside the AUP/UUP process the changes will continue to be treated at a tactical level and will be processed at the ATC level, informing the users tactically. Notification to neighbouring ATC units and NM will be provided tactically (e.g. by phone, fax or UUP-like message). The detailed procedure is described in paragraph 4.8.6.

4.8.1 **D-6 to D-2 before Operations**

4.8.1.1 From D-6 to D-2 AMCs collect any information about airspace plans related to the reference day of Operations and publish it via DRAFT AUPs. This information could trig coordination with relevant FMPs, adjacent AMCs and NM in order to properly assess any impact of the available information on the expected traffic forecast for the reference day, identify and highlight capacity shortfalls, and eventually agree on the adaptation of the airspace plans and/or traffic flow adjustment requirements that will be requested on the reference day of operations.

4.8.1.2 The required DRAFT AUPs are published on the NOP Portal. Being this promulgation not mandatory, it is not foreseen to publish the EAUP for the reference day the information is published.

4.8.2 **The Day before Operations (D-1)**

4.8.2.1 **Before 11.00 UTC (10.00 UTC Summer) on the Day before Operations:**

a) the FMP, with its related ACC, should compare the NM operational requirements for traffic flow adjustment with relevant ACC factors such as sector handling capability, equipment constraints, staff availability and operational factors, and determine the corresponding CDRs and/or specific airspace configuration requirements;

Reference: EUROCONTROL-SPEC-0112
b) the ACC/FMP should send the CDRs availability and/or specific airspace configuration requests to the AMC, with details of traffic forecasts, capacity shortfalls and delay predictions;

c) the national AAs should collect all airspace user requirements for TRAs/TSAWs, AMC-manageable R and D Areas and CBAs, for the 24-hour period of the next day of operations, and submit them as the civil/military Airspace Requests to the AMC;

d) the managers of designated R and D areas should advise the AMC of the details of any reduced utilisation of these areas;

e) NM should identify pre-defined airspace scenarios suitable for a more effective traffic flows management and advice the relevant AMCs on the proposed activation of selected pre-defined airspace scenarios.

4.8.2.2 Before 1500 UTC (1400 UTC Summer) on the Day Before Operations:

a) the AMC should collect, collate and analyse all airspace requests, including the proposed activation of pre-defined airspace scenarios, resolve conflicts through negotiation and coordination, respond to any additional requests to resolve route inconsistencies, and decide on allocation of CDRs, TRAs/TSAWs and CBAs in accordance with priority rules established at ASM Level 1;

b) the AMC should obtain details of, or in case of CDRs1 managed at ASM Level 2, decide on, the periods of temporary unavailability of CDRs1;

c) the AMC should compose a Draft AUP after conducting, if required, coordination with other AMCs. The AMC should forward it to NM (CADF) via CIAM by 13.00 UTC (12.00 UTC Summer) at the latest;

d) between 13.00 and 14.00 UTC (12.00-13.00 UTC Summer) NM should evaluate the impact on the network of the "draft" airspace allocation in close coordination with FMPs and AMCs concerned, verify the impact on initial pre-defined airspace scenarios and forward proposals to relevant AMCs and FMPs. A scenario may contain recommendations on change in CDRs/TRA/TSAWs availability details (e.g. flight level band, availability time), sector reconfiguration etc.

Where relevant, the pre-defined airspace scenarios should also contain information for all States concerned, with an indication of changes that should be agreed by those States to make the scenario work.

Note: NM may identify more than one pre-defined airspace scenario.

e) between 14.00 and 15.00 UTC (13.00 and 14.00 UTC Summer) the AMC should consider the advice/alternatives proposed by NM and coordinate proposed changes with the Airspace Users that requested airspace reservations, if required;

The final decision to activate a pre-defined airspace scenarios/areas allocation decision remains the responsibility of the AMC.

f) by 15.00 UTC (14.00 UTC Summer) the AMC should promulgate the AUP via CIAM for the 24-hour period from 06.00 UTC on the day of operations to 06.00 UTC the next day (0600 UTC D to 0600 UTC D +1);

g) The AMC may send the AUP to AAs, FMPs, ACCs and, if bilaterally agreed, to adjacent AMCs via other means of notification (e.g. AFTN).
4.8.2.3 **Before 16.00 UTC (15.00 UTC Summer) on the Day Before Operations:**

a) The CADF consolidates the AUPs information in a European AUP (EAUP) that is published on the NOP portal and post on eAMI server. Dissemination of information via eAMI should allow stakeholders using B2B service to upload EAUP information in their systems.

b) the CADF should ensure that information on CDR availability and areas allocation is made known to the NM Operational Units;

c) the FMPs/ACCs should notify NM of any resulting capacity changes that could affect ATFM measures.

4.8.2.4 **After 16.00 UTC (15.00 UTC Summer) on the Day Before Operations:**

AOs file or re-file their FPLs according to the airspace and ATFCM situation.

4.8.3 **Release of Areas, Cancellation/Relaxation of FUA/EU restrictions and/or New Availability of CDRs**

The following procedures will be applied to provide information to the users about changes of the airspace plan in relation of release of areas and/or associated FUA/EU restrictions previously planned as well as increased availability of CDRs.

4.8.3.1 **As Required On The Day Before Operations:**

4.8.3.1.1 **Alteration of AUP via UUP publication on D-1**

The Airspace Users that have requested airspace allocations should advise the AMC about any change in their planning. This will enable the associated CDR to be available for additional period(s) than planned in the earlier AUP. If required, the AMC should inform the FMP and NM about the new airspace opportunities using an UUP.

a) as from the EAUP publication (16.00 UTC /15.00 UTC Summer), the Airspace Users which requested airspace allocations should advise the AA/AMC about the changes in their planning for the next day, if any (e.g. activity completed earlier than planned, cancelled or reduced in time or volume, change of activity which does not require a FUA/EU restriction or requires a less restrictive FUA/EU restriction(s) etc.);

b) upon reception of a such information, the AA/AMC should check if the airspace is needed by another user; . In case of new requests, the AA/AMC verifies whether FUA/EU restrictions are required;

c) if there is no requirement for use of that volume of airspace from other users, or the new activity does not require any FUA/EU restrictions or allows a relaxation of the previously published FUA/EU restrictions, AMCs should inform national FMPs and NM regarding the intention to lift/decrease airspace segregations (in time and/or space) and/or the associated FUA/EU restrictions via the promulgation of the first convenient UUP from 17.00 UTC (16.00 UTC Summer) every hour up to 20.00 UTC (19.00 UTC Summer);

d) the UUPs provide information on the changes starting from 0600 UTC D to 0600 UTC D+1. Any UUP promulgated by the AMC contains full information on airspace allocation at the time of promulgation.

16 “Relaxation” means an increase of the availability (in time and/or in space) of the CDRs which are part of the restriction.
4.8.3.1.2 Draft UUP

In some cases the re-routeing of traffic on new available CDRs and/or available areas (e.g. TRA) due to the lift/decrease of airspace segregations (in time and/or space) and/or associated FUA/EU restrictions, could produce downstream effects. This could be particular relevant when the availability of CDRs is associated to the application of RAD restrictions. Experience of actors involved (AMCs, FMPs and NM) and/or strategic analysis will identify such situations that require the usage of draft UUP.

Because lead time for the new availability of CDRs and/or areas (e.g. TRA) is not required, in case of draft UUP AMC should consider the time required for the coordination and identify which UUP is most suitable.

On the basis of Draft UUP received from AMC(s), FMPs, if not advised before, and NM should identify the flights impacted and assess the additional CDRs openings or available airspace (e.g. TRA) opportunities from the Local/Network perspective, and communicate them (if any) to AMCs for their consideration.

Such advice may contain recommendations on changes in CDRs/areas availability details (e.g. flight level band, availability time, FUA/EU restrictions), sector re-configuration, etc. Where relevant, the advice should also contain information for all States concerned with the pre-defined airspace scenario, with an indication of changes that should be agreed by those States to make the pre-defined airspace scenario viable.

4.8.3.1.3 AMCs should receive the pre-defined airspace Scenario proposed by NM and FMPs and take into consideration their proposals.

4.8.3.1.4 AMCs should take the final airspace allocation decision, and, if required, promulgate the information using the most suitable UUP.

4.8.3.1.5 NM should update NM Environment (CACD) database in accordance with the UUPs received in order to ensure FPL consistency.

4.8.3.1.6 The new CDRs/areas availability and/or cancellation/relaxation of FUA/EU restrictions information should be disseminated by NM through:

- The NOP portal; and
- eAMI

Dissemination of information via eAMI should be achieved through the posting CDRs/areas availability and/or cancellation/relaxation of FUA/EU restrictions updates onto FTP server in the same way as it is being done by NM for e-RAD promulgation. Such a process would allow AO stakeholders using B2B service to upload the updates into their systems.

4.8.3.1.7 If FPLs are available, re-routeing/new trajectory proposal messages should be submitted by NM (i.e. by AOLO) to potentially interested AOs, concentrating on the most beneficial CDRs/airspace volumes available.

4.8.3.1.8 Interested AOs should re-file FPLs accordingly.

4.8.3.2 The Day of Operations

a) Airspace users should utilise the areas in accordance with the AUP and UUPs allocation as promulgated on D-1;
b) ACCs should utilise the CDRs or the airspace of non-allocated areas in accordance with the AUP and UUPs activation as promulgated on D-1 as well as with tactical modus operandi;

c) AOs should flight plan the CDRs and/or way points (e.g. FRA) in accordance with AIPs publications and EAUP and EUUPs activations as promulgated on D-1.

4.8.3.2.1 As Required on the Day of Operations:

4.8.3.2.1.1 On the Day of Operation (D), the Airspace Users, which previously requested airspace, advise the AA/AMC about any change in their planning (e.g. activity completed earlier than planned, cancelled or reduced in time or volume, change of activity which does not require a FUA/EU restriction or requires a less restrictive FUA/EU restriction, etc). This will enable the associated CDRs and/or airspace volumes to be available for additional period(s) than that planned in the AUP.

a) upon reception of such information the AA/AMC should check if airspace is needed by another user(s). In case of new requests, AA/AMC verifies whether FUA/EU restrictions are required;

b) The AMC will inform FMP and NM about the new airspace opportunities using the first convenient (no lead time is required) UUP from 07.00 UTC (06.00 UTC Summer) every 30 minutes up to 20.00 UTC (19.00 UTC Summer). Each UUP promulgated by the AMC supersedes the previous one(s).

4.8.3.2.1.2 In those situations where Network and Local Network Assessment is deemed necessary (e.g. affecting pre-defined airspace scenarios), AMC should inform national FMPs and NM regarding the intention to lift/decrease airspace segregations (in time and/or space), and/or cancellation/relaxation of FUA/EU restrictions and the opportunity of additional CDRs/airspace volumes availability via usage of Draft UUP17.

4.8.3.2.1.3 In case of draft UUP, AMC should consider the time required for coordination and identify which UUP will be suitable to eventually publish the information.

a) the NM and the FMPs should identify possible benefits from the opportunity (e.g. offloading sector, sector reconfiguration etc.). On the basis of the Draft UUP received from AMC(s), NM should identify the flights impacted and assess the additional CDRs opening or available airspace opportunities from the network perspective and provide advice (if any) to the AMCs for their consideration;

b) such advice may contain recommendations on change in CDRs/areas availability details (e.g. flight level band, availability time, FUA/EU restrictions), sector re-configuration, etc. Where relevant, it should also contain information for all States concerned with the pre-defined airspace scenario, with an indication of changes that should be agreed by those States to make the pre-defined airspace scenario viable.

4.8.3.2.1.4 AMCs should receive the pre-defined airspace scenario proposed by NM and FMPs and take into consideration their proposals.

4.8.3.2.1.5 AMCs should take their final airspace allocation decision, and, if required, promulgate the information using the most suitable UUP. Lead time for the validity of the change(s) is not required.

17 A technical solution is planned for implementation of draft UUP.
4.8.3.2.1.6 NM should update the NM CACD database according to UUPs received in order to ensure FPL consistency.

4.8.3.2.1.7 The new CDRs/areas availability and/or cancellation/relaxation of FUA/EU restrictions information is disseminated by NM through:

- NOP portal; and
- eAMI

Dissemination of information via eAMI should be achieved through the posting of CDRs/areas availability and/or cancellation/relaxation of FUA/EU restrictions updates onto FTP server in the same way as is being done by NM for e-RAD promulgation. Such a process would allow AO stakeholders using B2B service to upload the updates.

4.8.3.2.1.8 If FPLs are available, re-routeing/new trajectory proposal messages should be submitted by NM (i.e. by AOLO) to potentially interested AOs, concentrating on the most beneficial CDRs/airspace volumes available.

- Should the flight be in the Planning Phase, interested AOs should re-file FPLs accordingly.
- Should the flight be in the Execution Phase, it may continue as planned. Any required re-routeing will be provided by ATC to the pilot.

Note 1: Flight in the planning phase means a flight in any stage of preparation 1 hour or more before EOBT.

Note 2: Flight in execution phase means a flight from 1 hour before EOBT onwards (including the airborne stage).

4.8.4 Restricted Airspaces (RSA) Management in AUP/UUP

4.8.4.1. Restricted Airspaces (RSAs) represent a part of the Airspace where General Air Traffic (GAT) can be restricted. In practice, it corresponds in most cases with airspace where military operations or other operations that require segregations may take place.

4.8.4.2. Each Restricted Airspace is managed by one and only one AMC (Airspace Management Cell) - in case of a Cross Border Area (CBA) by the lead AMC - which is responsible for the coordination and final publication of the restrictions of the Airspace.

4.8.4.3. CACD data only includes Restricted Airspaces (RSAs) after coordination with the concerned AMC through the National Environment Coordinator (NEC). This coordination is needed to decide precisely which of the Restricted Airspaces published in AIPs are required in CACD and to define CIAM-specific parameters for which values are not published.

4.8.4.4. It should also be noted that once Restricted Airspaces (RSAs) are defined in CACD database, an AUP is required daily for the concerned AMC.

4.8.4.5. Activation

4.8.4.5.1. The RSA Activation includes a FL band (Lower/Upper FL), a start date and time, and the end date and time.

18 RSA is the current terminology used in CACD to identify generally all different types of areas, manageable or not, that can be allocated via CIAM.
4.8.4.5.2. RSA allocations from Released AUPs/UUPs are automatically propagated to the corresponding RSA Activation tables.

4.8.4.5.3. Remark 1. However, it should be noted that RSA activation alone in AUP/UUP does not ensure cross check and invalidation of the FPLs of the flights crossing the area volume of airspace when area is planned to be activated.

4.8.4.5.4. Using CIAM CDR expansion function or a local ASM tool, AMC can identify and publish in AUP/UUP list of associated CDRs and define scenarios of their availability/unavailability in case the RSA is activated. Such scenarios should be defined well in advance, coordinated and pre-validated with CADF NMD.

4.8.4.5.5. Remark 2. However, it should be noted that only those FPLs that consist of unavailable CDRs (or portion of) in field 15 will be rejected or invalidated. The FPLs that do not consists of the unavailable CDRs (e.g. filing DCT trough active TSA/TRA) will not be captured by either two processes described above. For DCT described in RAD Appendix 4 this is valid as well, unless a dependent applicability with the RSA is pre-defined. In this case, the FPL filing the DCT will be rejected or invalidated. Even if the RSA will be partially allocated (level band), all the FLs of the DCT described in RAD Appendix 4 will be affected.

4.8.4.5.6. In order to ensure that the volume of the airspace of such TSA/TRA made active in AUP/UUP is effectively sterilised, AMC should coordinate with NMD CADF the implementation of required restrictions, as described in 4.8.4.6.

4.8.4.5.7. As a result, the FPL crossing the volume of the airspace of an active area will be rejected or invalidated in accordance with FPL reprocessing process. For more details about IFPS reprocessing process please refer to IFPS Users Manual.

4.8.4.5.8. There is a possibility to identify scenario for such area activations. By default, if no scenarios identified for the area, the relevant volume of the airspace will be fully sterilised. For more details please refer to the AMC/CADF Operations Manual.

4.8.4.6. **FUA/EU Restrictions**

4.8.4.6.1. There are different types of restrictions that may be coordinated with the NM. In relation to area reservations, a specific type of restriction, termed as FUA Restriction, can be coordinated.

4.8.4.6.2. FUA Restrictions are used to identify area allocations published in RAD Appendix 7 and notified daily via AUP/UUP. These restrictions are implemented in CACD as well as the associated areas. By convention, these restrictions will have an identifier composed of the Restricted Airspace Identifier (e.g. EBTRA01) + the letter ‘R’. In case of more FUA restrictions are associated with the same area, different letters other than “R” can be used. These shall be properly reflected in the RAD Appendix 7.

4.8.4.6.3. In case of a FBZ is required, an associated FUA restriction shall be defined. The associated restriction will have an identifier composed of the published FBZ identifier (e.g. EBTRA01 Z) + the letter ‘R’. In case of more FUA restrictions are associated to the same FBZ, different letters other than ‘R’ can be used. These shall be properly reflected in the RAD Appendix 7.

4.8.4.6.4. The implementation of a FUA restriction for a FBZ does not preclude the option to implement a FUA restriction for the associated area as well, if so required by the relevant State.

4.8.4.6.5. For ad hoc areas implemented for a temporary period (e.g. large scale exercises or special events), planned to be processed via AUP/UUP, an EU Restriction could be
defined in the CACD system, if required. It will be managed as a FUA restriction. The Restriction identifier uses the format “EU” + free text (maximum 7 characters) + 1 alphabetic character (e.g. “R”). However, it is recommended that the name of the temporary exercise or special event for which the EU Restriction has been requested be used as a reference (e.g. for the exercise TIGER MEET, the EU Restriction would be called EUTIGER1A).

4.8.4.6.6. FUA Restrictions associated to areas and/or FBZs could be complex. For the implementation into the technical systems, a complex restriction requires the breakdown into basic restrictions utilising sub-codes for their identification. The RAD Appendix 7 should describe the complete FUA restriction using a single code, as defined in paragraphs 4.8.4.6.2 and 4.8.4.6.3. In the NM systems (e.g. CACD) a complex FUA restriction is inserted as a list of sub-codes of the basic restrictions which together defines the complex restriction. These sub-codes will contain the FUA restriction code (e.g. EBTRA01R) followed by a letter starting from A (e.g. EBTRA01RA, EBTRA01RB etc.). In these cases, the IDs of the areas/FBZs should be adapted to respect the maximum length of 10 characters including the letters for the associated restrictions.

4.8.4.6.7. The FUA/EU restrictions, activated with the associated areas (permanent or ad hoc) are allocated via AUP/UUP, The final publication of EAUP/EUUP will automatically generate the closure of the airspace in the CACD, therefore the interaction with the IFPS system for checking the FPLs is affected.

4.8.4.6.8. In case of complex FUA restrictions, all sub-codes will be manageable via ASM systems (e.g. CIAM). For the correct activation of a FUA restriction, all sub-codes shall be activated simultaneously. In no circumstances a sub-code part of a complex FUA restriction could be activated in isolation.

4.8.4.6.9. Besides pre-defined scenarios, the system used for the area allocations (e.g. CIAM), will offer the option to de-couple the restriction from the area(s)\(^\text{19}\). In these cases the publication of the areas via AUP/UUP won’t affect the FPLs.

4.8.5. Unplanned Activation of areas and/or Associated FUA/EU Restrictions

4.8.5.1. As Required on the Day Before Operations:

4.8.5.1.1. The Airspace Users that need additional airspace reservations and/or new/more constraining FUA/EU restrictions\(^\text{20}\) should advise the AMC on the unplanned activation of airspace and/or new/more constraining FUA/EU restrictions required (in addition to those published by AUP earlier). For this purpose, as from EAUP publication up to 17.00 UTC (16.00 UTC Summer), Airspace Users should send to the AMC their request on additional airspace activation needs and/or new/more constraining FUA/EU restrictions which were not envisaged by and published in the relevant AUP.

4.8.5.1.2. If required, the AMC may carry out coordination with neighbouring AMCs and identify potential available areas in order to find other solutions instead of closing a CDR and/or restricting access to airspace volumes that were previously available.

4.8.5.1.3. AMC should inform FMPs concerned and NM regarding the intentions to implement new or increase already published airspace reservations (in time and/or space) and/or new/more constraining FUA/EU restrictions via promulgation of Draft UUP one hour before the concerned UUP (e.g. 17.00 UTC for the 18.00 UTC UUP slot). Any of the D-1 UUPs could

\(^\text{19}\) This function won’t be available for FBZ, by default implemented to affect FPLs.

\(^\text{20}\) More “constraining” FUA/EU restriction means a decrease of the availability (in time and/or in space) of the CDRs which are part of the restriction.
be used for unplanned activation of areas and/or associated FUA/EU restrictions, from 17:00 UTC to 20:00 UTC winter time. **Remark:** “Concerned FMPs” are the FMPs of all ACCs which will be confronted with the tactical re-route following a CDR closure under procedure 3.

4.8.5.1.4. NM, FMPs concerned and the AMC should assess the impact of the request at local and network level (e.g. on-loading sector, sector re-configuration, pre-defined airspace scenarios etc.). During this step, NM should identify the flights and/or ATS sectors that would be impacted by the route/airspace closure, and consider these elements in the assessment, look for opportunities (reducing the network impact) and coordinate with the AMC and FMPs concerned for optimisation of airspace allocation (e.g. changing the activation time, flight level band, CDRs closure details, different FUA/EU restrictions etc.). The result of this analysis and potential alternative scenarios (if any) should be sent by NM to the AMCs and to the FMPs concerned for their consideration.

4.8.5.1.5. AMCs should receive the Scenario proposed by NM and conduct final coordination with Airspace Users, if required.

4.8.5.1.6. AMCs should take the final airspace allocation decision, and, if required, compose UUP by 15 minutes before the concerned UUP slot (e.g. 17.45 UTC for the 18.00 UTC UUP slot) (Ready status) and release the resulting UUP information on the hour (e.g. by 18.00 UTC) at the latest through the most suitable EUUP. Relevant AAs, areas users, FMPs concerned and adjacent AMCs where required, should acknowledge receipt of the UUP.

4.8.5.1.7. The new airspace structure (ad hoc activation of area, new/more constraining FUA/EU restrictions and closed CDRs) should be implemented in the NM CACD database (only valid as from 06.00 UTC on the Day of operations) to ensure FPL consistency.

4.8.5.1.8. The new CDR unavailability, airspace status and/or new/more constraining FUA/EU restrictions information should be disseminated by NM through:

- the NOP portal
- eAMI

4.8.5.1.9. Dissemination of information via eAMI is being done through the posting of CDR availability, airspace allocation and/or new/more constraining FUA/EU restrictions updates onto FTP server in the same way as is being done by NM for e-RAD promulgation. Such a process will allow AO stakeholders using B2B service to upload the updates. It remains a State responsibility to decide on the requirement for any AIS notifications (e.g. NOTAM) in addition to AUP/UUP as detailed in §4.7.2.2.2.

4.8.5.1.10. If FPLs are available, FLS messages should be sent by NM to AOs for the flights concerned. AOs concerned should re-file FPLs accordingly.

4.8.5.2. As Required on the Day of Operations

4.8.5.2.1. On the Day of Operation (D), the Airspace Users that need additional airspace reservations and/or new/more constraining FUA/EU restrictions should advise the AMC on the unplanned activation of airspace and/or new/more constraining FUA/EU restrictions required (in addition to those published by AUP/UUP at D-1).

4.8.5.2.2. AMC should inform FMPs concerned and NM regarding the intention to activate new airspace or increase already published airspace reservations (in time and/or space) and/or new/more constraining FUA/EU restrictions via promulgation of Draft UUP using the first convenient UUP from 07.00 UTC (06.00 UTC Summer) every 30 minutes up to 20.00 UTC.
For the choice of the convenient UUP, it should be considered the required lead time of Three Hours (3H) before its validity. In case of the request does not respect the three hours (3H) lead time, NM should inform AMC that the request to promulgate the draft UUP is rejected, unless specific contingency situation requires an exception (e.g. correction of previous erroneous publication). Relevant AAs, TSA/TRA users, FMPs concerned and adjacent AMCs where required, should acknowledge receipt of Draft UUP.

Based on the Draft UUP, NM, FMPs concerned and the AMC should assess the impact of the request at local and network level (e.g. on-loading sector, sector re-configuration, etc.). Specifically, NM will focus on the assessment of additional airspace requests affecting pre-defined airspace scenarios.

During this step, NM in coordination with FMPs concerned should identify the flights (also those in the “execution phase”, i.e. inside 1 Hour prior EOBT) and sectors that would be impacted by the routes closure, and/or restrictions in the airspace availability and look for opportunities reducing the network impact. For its analysis, NM will rely on pre-defined airspace scenarios (e.g. strategic restrictions) identified for each area subject to unplanned requests of activation.

Especially, as a part of the local and network assessment on the day of operation:

- concerned FMPs in coordination with NM should identify the flights that will be in the execution phase by the time of the new/revised areas activation and/or CDRs unavailability;
- FMPs/ATCs concerned should assess their ability to manage tactically the flights to be in the execution phase if any and in coordination with AMC and NM look for optimisation of airspace allocation (e.g. changing the activation time, flight level band, CDR unavailability details, different FUA/EU restrictions etc.) in such way to ensure the number of flight in execution phase to be handled tactically (number of flights to be in the execution phase) is kept at an acceptable level for ATCO(s) concerned;
- if, in spite of the of the airspace allocation and/or FUA/EU restrictions optimisation, or due to inability to optimise the airspace allocation and/or FUA/EU restrictions activation, the number of the flights in the execution phase (and/or added complexity) remains unacceptable for ATCO(s), FMPs concerned in coordination with NM should develop and introduce ATFCM measures ensuring ATCO(s) workload allows for those flights tactical management;
- in case if, in spite all efforts, there is no possibility to put in place any, or combination of, effective ATFCM measures to optimise airspace allocation and/or to optimise FUA/EU restrictions activation, allowing feasible tactical management of the flights in execution phase by ATCO, such airspace request should not be accommodated.

The result of the network analysis and potential alternative pre-defined airspace scenarios (if any) should be made available by NM to the AMCs and FMPs concerned (i.e. of upstream and downstream ATS units to be involved in the potential re-routeing as a result of unplanned area activation and/or new/more constraining FUA/EU restrictions) for their considerations.

AMCs should receive the pre-defined airspace Scenario proposed by NM and FMPs concerned and conduct final coordination with Airspace Users, if required.

A Technical solution is planned to trigger an alert for NM staff in case of ad-hoc requests.
4.8.5.2.8. AMCs in agreement with the concerned FMPs should take its final airspace allocation decision, and, if required, compose the UUP accordingly (Ready status).

4.8.5.2.9. Involvement of FMPs concerned and ATC in collaborative decision making process regarding ad hoc airspace allocation and/or new/more constraining FUA/EU restrictions on the day of operation is crucial to ensure safety.

4.8.5.2.10. The new airspace structure (ad hoc activation of areas and closed CDRs) and/or new/more constraining FUA/EU restrictions should be implemented in the NM CACD database according to UUP information for ensuring FPL consistency.

4.8.5.2.11. The CDRs unavailability and/or areas activations relevant for flight planning should be disseminated by NM through:
 - the NOP portal; and
 - eAMI

Dissemination of information via eAMI should be done through the posting of CDR availability or airspace status and/or new/more constraining FUA/EU restrictions updates onto FTP server in the same way as is being done by NM for e-RAD promulgation. Such a process would allow AO stakeholders using B2B service to upload the updates.

4.8.5.2.12. It remains a State responsibility to decide whether an AIS notification (e.g. NOTAM) is required in addition to publish the new CDRs unavailability.

4.8.5.2.13. If FPLs are available, FLS messages should be sent by NM to flights concerned:
 - Should the flight be in the Planning Phase, interested AOs should re-file FPLs accordingly;
 - Should the flight be in the Execution Phase, it may continue as planned. Any required re-routeing will be provided by the ATCO to the pilot.

Note 1: Flight in the planning phase means a flight in any stage of preparation 1 hour and more before EOBT.

Note 2: Flight in execution phase means a flight as from 1 hour before EOBT onwards (including the airborne stage).

4.8.5.3. Application

4.8.5.3.1. States at ASM level 1 in coordination with local ATFCM function and all relevant ATC-units (i.e. those units confronted with the tactical re-route up/downstream) should decide on the strategic application of the Ad-Hoc Activation of areas and/or new/more constraining FUA/EU restrictions Procedure on a case-by-case basis taking into account:
 - complexity of the airspace,
 - complexity of the traffic,
 - availability of direct communication between ATC and the areas users in order to ensure safety in case of communication failure,
 - other criteria as deemed appropriate.

4.8.5.3.2. This should result in a pre-defined list of CDRs, areas and/or FUA/EU restriction scenarios which are eligible (or not) for unplanned request of areas and/or new/more constraining FUA/EU restrictions including the necessary conditions.
4.8.5.3.3. The procedure application should be limited to controlled airspace only except airspace class E.

4.8.5.3.4. On the day of operation, FMPs/ACCs concerned when assessing their ability to manage tactically the flights to be in execution phase if the area, and/or new/more constraining FUA/EU restrictions, to be activated as requested should take into account:

- availability of appropriate ATCO Tools and HMI which detect FPL inconsistencies and produces a timely warning to the ATCO;
- the re-clearance via new route points might result in additional radio communication and/or new conflicts potentially increasing ATCO’s workload;
- availability of direct communication between ATC and the areas users in order to ensure safety in case of communication failure and in other situations when an infringement is imminent,
- the planned activation of a level band within an area is not hampering possible vertical profiles of traffic that is transiting still opened CDR above or below the activated level.

4.8.5.3.5. ATCO should be aware that an alternative clearance in accordance with the necessary re-route would be necessary. This might be a re-route which is actually not within the concerned ATCO’s Area of Responsibility. In this case, LoAs should be signed with adjacent ACC concerned in order to define appropriate co-ordination procedures to apply for the re-routeing of the traffic involved.

4.8.5.3.6. Involvement of the concerned FMPs/ATCs in ad hoc activation of areas and/or new/more constraining FUA/EU restrictions on the day of operation should be ensured in order to satisfy the procedure safety requirements and ensure the safety.

4.8.5.3.7. ASM Level 1 should make regular review of the procedure application, analyse its application results, where the procedure is applied especially often - look for improvement of ASM/ATFCM pre-tactical phase aiming at improving of the D-1 airspace use planning process accuracy.

4.8.5.3.8. ASM Level 1 may decide to complement the above described procedures with local ones that shall not undermine the general process. In case of cross-border situations any local complementary procedures (e.g. sending fax, email, etc.) should be coordinated among States involved.

4.8.6. **Use of Tactical Management**

4.8.6.1. ACCs should utilise the CDRs or the airspace in FRA in accordance with the AUP/UUP as well as with tactical modus operandi.

4.8.6.2. When associated TRA/TSA activity has ceased or has been cancelled, ACCs/FMPs should utilise CDRs or the available airspace on a tactical basis and may offer an aircraft a routeing or new trajectory through the inactive area on short-notice.

4.8.6.3. The AMC should decide in accordance with criteria established at ASM Level 1 on the provisional unavailability closure of CDRs for flight planning to be handled in real time at ASM Level 3.
4.9 ASM SOLUTIONS

4.9.1 From D-6 to D-2

4.9.1.1 Any ASM Solutions, including pre-defined airspace scenarios agreed in advance will be published on the NOP Portal. This information will be for awareness purposes while the AUP publication at D-1 will confirm the availability of the involved airspace structures for FPL purposes.

4.9.2 The Day before Operations

4.9.2.1 Before 1400 UTC (1500 UTC Winter) On the Day Before Operations (1400 UTC D-1):

a) The NM should analyse the expected traffic demand in order to verify from a network perspective, when ASM solutions are providing major benefits in terms of flight efficiency for a selected city pairs.

b) Based on the identified time windows offering more benefits with the application of ASM solutions, the NM will contact the relevant AMCs to coordinate the availability of CDRs/areas required to support the ASM solutions identified. The requests should contain recommendations on change in CDRs/areas availability details (e.g. flight levels band, availability time, etc.) in case when a draft AUP has been already issued. In specific, NM should assess the impact on pre-defined airspace scenarios of areas requests received, proposing alternative solutions.

c) Between 13.00 and 14.00 UTC Summer (14.00 and 15.00 Winter) the AMC should consider the advice proposed by NM and coordinate proposed changes with the Airspace Users that requested airspace reservations, if required22;

d) By 14.00 UTC Summer (15.00 UTC Winter) the AMC should promulgate the AUP for the 24-hour period from 0600 on the day of operations to 0600 UTC the next day (0600 UTC D to 0600 UTC D+1).

e) Based on the AUPs content, the NM will check CDRs/areas and associated FUA/EU restrictions information and decide which ASM solutions could be implemented.

4.9.2.2 Before 1500 UTC (1600 UTC Winter) On the Day Before Operations (1500 UTC D -1):

a) NM should publish on the NOP Portal the available ASM solutions along selected city pairs.

b) NMC should provide re-routing proposal to interested AOs through RRP messages.

4.9.2.3 After 1500 UTC (1600 UTC Winter) On the Day Before Operations (1500 UTC D -1 Summer or 1600 UTC D-1 Winter):

a) AOs file or re-file their FPLs taking into account the availability of airspace structures linked to the published ASM solutions, as appropriate.

22 The final airspace allocation decision remains the responsibility of the AMC.
4.9.3 **Airspace changes after AUP**

The following procedures will be applied by NM to process information about changes of the airspace plan in relation of ASM solutions implemented or to be identified if required. The procedures consider both new availability/new requests of CDRs/areas.

4.9.3.1 **As Required On The Day Before Operations:**

4.9.3.1.1 New availability of CDRs/areas

a) AMC should promulgate the new availability of CDRs/areas and/or revised FUA/EU restrictions with the first available UUP when required, if there are no other users’ requests for use areas volume and/or cancellation/relaxation of FUA/EU restrictions becomes possible.

b) NMC, based on the UUPs information, will evaluate whether the new availability can be used to implement new ASM Solutions identified previously but not implemented.

c) NM publishes the new ASM solutions available on the NOP Portal and should provide re-routing proposals to interested AOs through RRP messages.

d) AOs file or re-file their FPLs taking into account the availability of airspace structures linked to the published ASM solutions.

4.9.3.1.2 New requests of areas and/or more restrictive FUA/EU Restrictions

a) For new airspace requests and/or more restrictive FUA/EU restrictions, the procedures described in chapter 4.8 are applied. In these cases NM, based on the draft UUP received, performing the assessment for network implications will also verify whether the new requests are implying the closure of CDRs and/or area volumes considered for the implementation of ASM solutions or impacting pre-defined airspace scenarios.

b) In case of identification of CDRs/areas used for ASM solutions or impacting pre-defined airspace scenarios, NM will provide counterproposal to the AMC in order to ensure the availability of the CDRs/areas involved in the ASM solutions published (e.g. rejection, change of time, change of FLs, change of modularity).

c) AMC should consider the advice of NM for the coordination with airspace users and for the final decision on the information to be promulgated.

d) Based on the information promulgated with UUP at 18.00 UTC (17.00 UTC Summer) NM will verify whether the CDRs/areas are still available. In case of closure, NM will publish the ASM solutions changed on the NOP Portal.

e) AOs file or re-file the FPL according to the new status of ASM solutions, as appropriate.

4.9.4 **The Day of Operations**

4.9.4.1 In the day of operations the same procedures described in 4.9.3.1 are applied.

4.9.4.2 Due to time constraint, any request asking for changes of the agreed plans should take into consideration such possible constraints. This is the case especially for unplanned closure of CDRs/areas or more restrictive FUA/EU restrictions which have to be published using the first convenient UUP from 07.00 UTC (06.00 UTC Summer) every 30 minutes up to 20.00 UTC (19.00 UTC Summer). For the choice of the convenient UUP, it should be considered the required lead time of Three Hours (3H) before its validity.
4.9.4.3 The new availability of CDRs/areas or cancellation/relaxation of FUA/EU restrictions, published with the most convenient UUP do not require complex coordination, therefore their utilisation to review or implement new ASM solutions should be possible without difficulties.

4.10 TEMPORARY AND CONTINGENCY PROCEDURES

4.10.1 FUA Temporary Instruction (FTI)

4.10.1.1 The "basic" procedures described above in para. 4.1 to 4.8 are permanent, common to and binding to all AMCs and the CADF. However, operational instances may arise which, for the benefit of the users, require the CADF and AMCs to:

a) temporarily deviate from the "basic" procedures; or
b) apply a new procedure which has been considered beneficial by the experts of AMCs and of the NM/CADF prior to being endorsed as a new "basic" procedure; or

c) apply a new procedure which could be of temporary validity and/or of such operational impact which would not justify its transformation into a permanent procedure.

4.10.1.2 Procedures of the above nature are named FUA Temporary Instructions (FTI). FTIs shall be agreed/applied by the appropriate AMCs and the NM/CADF for all or part of the FUA area. A FTI will be published in a similar way to FMD Temporary Instructions in the format presented at Figure 5.

4.10.2 Implementation Procedure

4.10.2.1 The NM, as the unit responsible for the daily operations of the CADF, shall, with sufficient advance notice, coordinate and agree on the implementation of an FTI with the AMCs concerned and, when required, with the FMPs concerned and, if necessary, with the AOs.

4.10.2.2 When a decision has been taken among those concerned, the instruction shall be published by the NM as a FTI. The drafting of the instruction is the responsibility of the NM. The purpose, scope and parties affected by the instruction shall be clearly stated.

4.10.2.3 The NM should notify the responsible EUROCONTROL working arrangement (e.g. the Airspace Management Sub-Group) of the circumstances which require the implementation of a FTI. In any case, FTIs will be sent to all affected AMCs, FMPs and AOs, for application and to the EUROCONTROL NMD/COO/NOM/OPL unit, for information.

4.10.2.4 FTIs are issued on the authority of the NM Head of Operations.

4.10.3 Subsequent Treatment

4.10.3.1 When a FTI is proposed to be applied on a permanent basis, e.g. after a trial period, the NM should forward to the responsible EUROCONTROL working arrangement (e.g. the Airspace Management Sub-Group) of the circumstances which require the implementation of a FTI. In any case, FTIs will be sent to all affected AMCs, FMPs and AOs, for application and to the EUROCONTROL NMD/COO/NOM/OPL unit, for information.

4.10.3.2 Once published in the present ASM Handbook, the NM informs the involved parties on the change of the FTI status.

4.10.4 Fields of Application

4.10.4.1 The NM shall issue FTIs/AIMs in the following domains:

a) NM/CADF -AMC working procedures;
b) FUA/CACD matters (e.g. modification of data);

c) use of the NM tools (e.g. CIAM);

d) NM/CADF -AOs relationship;

e) changes in AMCs or CADF addresses.

Figure 17: Example of FUA Temporary Instruction (FTI)
4.11 ASM OVER THE HIGH SEAS AT ASM LEVEL 2

4.11.1 General

4.11.1.1 The basis of the agreement reached on the Concept of the Flexible Use of Airspace by the ECAC States is that it should not be in contradiction with the Chicago Convention and its Annexes or the UN Convention on the Law of the Sea.

4.11.2 Activation of Danger Areas over the High Seas

4.11.2.1 In line with the fundamental principle of the Flexible Use of Airspace Concept, D areas over the high seas shall be notified (whether in a FRA environment or fixed route environment) as active in respect of the duration and extent of the scheduled activity. Thus, D areas over the high seas shall not be published as active when there is no activity notified to the State in whose FIR/UIR the D area is situated.

4.11.3 Activation of CDRs over the High Seas

4.11.3.1 The availability of a CDR over the high seas depends on the absence of activities potentially hazardous to the safety of air navigation either in established D areas or in airspace over the high seas which conflicts with the CDR. As there are no national sovereign rights in airspace over the high seas, and there is a universal freedom of navigation for ships and aircraft in international waters and overlaying airspace, the State responsible for providing ATS in that airspace cannot leave or publish a CDR available once it has received a notification of a D area activity. This applies to all categories of CDRs.

4.11.3.2 ICAO Annex 11 – Air Traffic Services and ICAO Doc 9554 on Safety Measures Relating to Military Activities Potentially Hazardous to Civil Aircraft Operations, establish that promulgation of information regarding such activities over the high seas shall be effected in accordance with the provisions of ICAO Annex 15 – Aeronautical Information Services. Therefore, an AMC shall have all the information in time to decide on the availability of a CDR over the high seas, based on the absence of any D area activation. Similarly, if a cancellation of D area activation has been issued, a CDR can be made available by the AMC. On the contrary, if a D area is activated where a CDR was available, ATS must, at ASM Level 3, take measures to re-route traffic which is intending to fly on this CDR or may have flight planned to do it.

4.11.3.3 For “danger areas” established over the high seas and used jointly across international FIR/UIR boundaries, the States concerned shall ensure that for Level 2, and Level 3 when appropriate, coordination procedures between their national AMCs and ATS have been established in written documents and reflected as necessary in their respective national AIP.

4.11.4 Alternative Method to Improve the Mechanism for the International Co-ordination

4.11.4.1 The coordination requirements and procedures for activities potentially hazardous to civil aircraft over the high seas are laid down in ICAO Annex 11 (paragraphs 2.17 and 2.18) and in ICAO Doc. 9554 (paragraph 2.16.1 and section 3). The application of the FUA Concept does not alter these coordination requirements and responsibilities and does not change the legal status of the airspace over the high seas. The FUA Concept does, however, provide procedures, as depicted in Figure 10, which simplify lines of coordination and allow more efficient ways of disseminating information resulting from this coordination.
4.11.4.2 Many ECAC States have adopted the procedures marked in dashed lines (marked as 1) to simplify the coordination process and use the AMC as a focal point for day-to-day airspace management. This results in the improvement of the mechanism for international coordination and dissemination of information. Other ECAC States and non-ECAC States continue to use the dotted procedure (marked as 2). It is a State ASM Level 1 prerogative to choose one procedure. However States which adopt the new procedure (marked as 1) must incorporate procedure (marked as 2) through suitable internal coordination (marked as 3) between national ATS and AMC units to permit the process to be completed expeditiously.

Figure 18: Alternative method to improve the mechanism for the International coordination of activities over the High Seas potentially hazardous to civil aircraft.

4.11.5 AMC Related Tasks

4.11.5.1 AMCs must be informed of any activation of D areas over the high seas. If this activation has been announced by a NOTAM, the AMC reproduces the NOTAM reference in the Additional Remarks field of the AUP/UUPs. This adds to the completeness of the AUP/UUPs for the whole of the FIR/UIR. AUP/UUPs publication of D area activation does not replace the need for a NOTAM in accordance with ICAO Annex 15. In this context, AMCs may be assigned the responsibility to publish the NOTAM.

4.11.5.2 CDRs availability/unavailability over the high seas is included in the daily AUP/UUPs published by the responsible AMCs. AMCs must take into account the fact that there are no national sovereign rights in airspace over the high seas. This therefore may preclude the application of national allocation rules for those CDRs.

4.11.5.3 When AMCs have notification of activities potentially hazardous to civil aircraft operations in airspace over the high seas which conflict with CDRs1, they can publish the corresponding unavailability of those CDRs1 for flight planning by using the appropriate part of the AUP.
SECTION 5

TACTICAL MANAGEMENT FUNCTIONS (ASM LEVEL 3)

5.1. GENERAL

5.1.1. Tactical ASM Level 3 consists of the real-time activation, deactivation or real-time reallocation of the airspace allocated at ASM Level 2 and the resolution of specific airspace problems and/or traffic situations between civil and military ATS units, controllers and/or controlling military units as appropriate.

5.1.2. The real-time access to all necessary flight data, including controller’s intentions, with or without system support, permits the optimised use of airspace and reduces the need to segregate airspace.

5.1.3. Adequate real-time coordination facilities and procedures are required to fully exploit the FUA Concept at ASM Levels 1 and 2. Flexibility in the use of airspace is enhanced by real-time civil/military coordination capability. This flexibility depends on the potential offered by the joint use of airspace by civil and military traffic.

5.2. MODES OF REAL-TIME CIVIL/MILITARY CO-ORDINATION

5.2.1 Direct communication between civil and military air traffic service units/military controlling units is essential to facilitate the safety resolution of specific traffic situations. It should be addressed in detail in written agreements, as referred in the EUROCONTROL Specification for the Application of the Flexible Use of Airspace (FUA) (L3-ASPU-01).

5.2.2 Associated coordination actions, which include the prompt exchange of information relevant to the safe and expeditious conduct of both civil and military flights, can take place either in an active or a passive mode with or without action by the controller.

5.2.3 The “Active mode” of civil/military coordination is the communication in real time between civil and military units which results from a controller(s) action. This active mode includes both "Verbal" coordination and "Silent" coordination, the communication process by manual input only.

5.2.4 The “Passive mode” of coordination is the communication of information in real time without any action by the controller. This is usually in the form of previously agreed automatic exchange of flight data between controllers to facilitate OAT/GAT separation without the need for an extra coordination.

5.2.5 The “Active mode” of coordination relates to the coordination of traffic situations whereas the Passive Mode of coordination relates mainly to the transmission of data and should be used to establish a course of action only where permitted by agreed procedures.

5.2.6 Silent coordination will mainly be used for crossing of airspace and/or route structures when prior coordination is required. The use of silent coordination may reduce the controller workload particularly in areas of very high density traffic.

5.2.7 Verbal coordination will be required to resolve certain coordination problems besides being available as the fall-back facility. In particular, the verbal coordination functions will be used whenever the silent system-supported dialogue cannot be positively and quickly concluded without a direct verbal dialogue.
5.3. COORDINATION PROCEDURES FOR ATS ROUTES AND AIRSPACE CROSSING

5.3.1. Coordination Procedures for Controlled Airspace or ATS Routes Crossings by OAT

5.3.1.1. General

5.3.1.1.1. In order to permit OAT/GAT separation during the crossing by OAT of an ATS route or controlled airspace (including FRA), different procedures can be used according to the amount and accuracy of the flight data available.

5.3.1.1.2. Access, via electronic display, to the flight data of the overall OAT and GAT traffic situation involved, allows the controller responsible for OAT and/or GAT separation to determine a plan for either the application of ICAO horizontal or vertical separation minima, or the necessity for an active mode of coordination (verbal coordination or system-supported silent coordination).

5.3.1.2. General procedures - Sufficient flight data allowing ICAO standard separations without additional coordination

5.3.1.2.1. The display of all relevant OAT and GAT flight data, including controller's intentions required in national LoAs, allows the responsible controller to fulfil his/her responsibility for OAT/GAT separation during a route crossing without the need for additional coordination.

5.3.1.2.2. Controller's intentions are updated through the exchange of flight data, as laid down in LoAs, either simultaneously with or before, the corresponding ATC clearance is issued.

5.3.1.3. OAT Crossing of Controlled Airspace - Display of Information

5.3.1.3.1. When bilaterally agreed, the controller responsible for GAT should be provided with the plan of action of the controller responsible for OAT intending to cross a specific portion of controlled airspace under his/her responsibility. Accordingly, a notification of intention is sent by controller responsible for OAT to the controller responsible for GAT.

5.3.1.3.2. The display to the GAT controller of all relevant OAT flight data allows the controller to be aware of the foreseen crossing conditions and to initiate coordination, if required. Division of the responsibility or the provision of separation between OAT and GAT is subject to detailed description in relevant LoAs.

5.3.1.4. Silent Co-ordination for Crossing

5.3.1.4.1. When the crossing requires prior coordination, the OAT controller sends, by means of a silent coordination message, a request for the crossing of controlled airspace (ATS route, CDR, and CTA). This request is responded to by the GAT controller by means of a silent coordination message.

5.3.1.4.2. The answer contains either an acceptance of crossing parameters or, if not acceptable, an alternative proposal, including revised crossing data (heading, FL, etc.). Verbal coordination is used if the alternative proposal is not acceptable.

5.3.1.4.3. When this coordination procedure is applied it binds each controller to an agreement and requires the controllers to conform to the agreed actions throughout the crossing. Division of the responsibility for separation under the circumstances of such an agreement is subject to national regulations and respective LoA.
5.3.1.5. **Use of Pre-notified Crossing Corridors by OAT**

5.3.1.5.1. In some specific cases determined in LoAs, it is better to pre-plan specific corridors for OAT when military traffic demand requires a block of flight levels. The use of these pre-planned crossing corridors is agreed/notified to the responsible controller by means of a procedure similar to one of those described above in para. 5.2.2 and/or 5.2.3.

5.3.1.5.2. Application of the pre-planned crossing corridors procedure binds each controller to the corresponding LoA and requires the controllers to conform to the agreed actions throughout the crossing. Division of the responsibility for separation under the circumstances of such an agreement is subject to national regulations and respective LoA.

5.3.1.6. **Transfer of Control Responsibility**

5.3.1.6.1. In case that the above procedures cannot be applied, a responsibility for transfer of control should be described in detail in respective LoA.

5.3.2. **Coordination Procedures for Airspace Crossings or Off-Route Flying by GAT**

5.3.2.1. **Crossing Clearance through an Active TRA**

5.3.2.1.1. When an off route/direct route for GAT is requested through an active TRA temporarily reserved for military activities, prior coordination is required. The request/answer procedure described in para 5.2.5 can be used to automate this coordination process.

5.3.2.1.2. This coordination procedure binds each controller to an agreement and requires the responsible controllers to conform to the agreed actions throughout the crossing. Division of the responsibility for separation under the circumstances of such an agreement is subject to national regulations and respective LoA.

5.3.2.2. **Prior/Reduced Coordination Airspace (PCA/RCA) Procedures**

5.3.2.2.1. Under the “Prior Coordination Airspace” (PCA) procedure, individual GAT is permitted to fly “off-route” within a predefined portion of airspace only after prior co-ordination has been accomplished between responsible controllers.

5.3.2.2.2. Under the “Reduced Coordination Airspace” (RCA) procedure, GAT is permitted to fly “off-route” within a predefined portion of airspace without prior coordination required. However, coordination by the responsible controller is required when OAT is to cross RCA.

5.3.2.2.3. The display of all relevant GAT flight data, including controller’s intentions, allows the OAT controller to be aware of the GAT crossing conditions of the RCA and to initiate co-ordination, if required.

5.3.2.2.4. Division of the responsibility for separation under the circumstances of such an agreement is subject to national regulations and respective LoA.

5.3.2.3. **Transfer of Control Responsibility**

5.3.2.3.1. In case that the above procedures cannot be applied, a transfer of control responsibility should be described in detail in respective LoA.
5.4. **SYSTEM SUPPORT FUNCTIONS**

5.4.1 **General**

5.4.1.1 At the tactical level the main requirement is to provide system support to create a traffic environment in which the FUA Concept can be applied efficiently, i.e. an environment in which the need to segregate traffic is reduced to a strict minimum. This can be achieved by:

- the provision of airspace use data;
- the exchange of flight data between civil and military units;
- the provision of system support for airspace crossing.

5.4.2 **Airspace Use Data Function**

5.4.2.1 The Airspace Use Data Information Function should provide, in real time, all the parties concerned with up-to-date information on the current use of airspace, in addition to AUP/UUPs information on allocated and scheduled use of airspace, so as to make efficient use of all available airspace.

5.4.2.2 The supporting systems should assure common, secure and consolidated information exchange of the current airspace status.

5.4.2.3 As a major flight safety concern, data integrity shall be guaranteed. The component, ensuring level 3 airspace management, should support activation, deactivation, short-term cancellation or amendments to reservations and reallocation of the airspace structures.

5.4.2.4 The supporting systems should provide the real time airspace status on an airspace status display and should be capable of interfacing with the ATC systems.

5.4.2.5 Initially, real time information on the current use of airspace should be provided manually in each ATS unit on their own and for their individual system.

5.4.3 **Basic Flight Plan Information - Identification Function**

5.4.3.1 The Basic Flight Plan Data Information Function concerns the automatic exchange between civil and military control units of all necessary flight plan data. This function will permit the creation of associated tracks/labels in both civil and military units for the display and identification of the overall OAT and GAT traffic situation involved in a civil/military coordination process. As a minimum, to permit the correlation of radar data with flight plan data, the aircraft identification/call sign, the SSR Mode and Code for each flight concerned in the coordination process shall be passed from civil to military units, and when required from military to civil units.

5.4.3.2 The common BFD message has been developed to permit the harmonised system-supported exchange of all necessary basic flight plan data between civil and military units.

5.4.4 **Current Flight Plan Information Function - Separation Function**

5.4.4.1 The current Flight Plan Data Information Function allows the automatic and dynamic update of the flight plan brought about by any subsequent ATC clearances.

5.4.4.2 The controller’s intentions data information function aims to automatically update the current flight plan with the next change subject to further clearance.
5.4.4.3 The passing or receiving of information on controller's intentions does not, by itself, constitute coordination for action. It should only enable the controllers to determine the necessity for an active mode of coordination.

5.4.4.4 The exchanged data may include data such as assigned heading, direct clearance, rate of climb/descent, assigned speed, controller/sector identification and any other executive data, including controller’s intentions, as specified in a bilateral agreement between the units involved.

5.4.4.5 Controller's intentions are updated flight data, which shall be exchanged, as laid down in LoAs, either before or simultaneously with the corresponding ATC clearance is issued.

5.4.4.6 The common CFD message has been developed to permit the harmonised distribution of updated flight data information.

5.4.5 **Silent Co-ordination Functionality - Airspace Crossing Function**

5.4.5.1 The Silent Coordination Functions, based on a system-supported dialogue, allow controllers to exchange coordination messages using electronic displays. These functions will speed-up and facilitate coordination procedures and methods, which at present are conducted mainly by speech. The main applications of this system-supported dialogue concern:
- crossing of ATS permanent/CDRs routes by OAT;
- crossing of controlled airspace by OAT;
- crossing of airspace reservation by GAT;
- use of additional CDRs/ direct routeing/off-route by GAT.

5.4.5.2 The system-supported dialogues required above for airspace and route crossings can be divided into the Airspace Crossing Intention Notification Functionality and the Airspace Crossing Dialogue Function.

5.4.6 **Airspace Crossing Intention Notification Functionality**

5.4.6.1 The “Airspace Crossing Intention Notification Function” should be used to advise a civil ATS unit of the plan of action of a military controller intending to cross a specific portion of controlled airspace with (a) military flight(s) or vice versa.

5.4.6.2 This notification of intention should not be seen as a request for crossing clearance or a cleared flight path; only the plan of action is forwarded, if required by bilateral agreement, for the information of the civil controller, the military controller or air defence unit.

5.4.6.3 The common message has been developed to permit the harmonised system-supported distribution of Airspace Crossing Intention Notification Information.

5.4.7 **Airspace Crossing Dialogue Function**

5.4.7.1 The “Airspace Crossing Dialogue Function” is a further development of the Airspace Crossing Intention Notification Function. It should be used when, by bilateral agreement, a prior OAT/GAT coordination is required for airspace or route crossing.

5.4.7.2 The Airspace Crossing Request Message (XRQ)/ Airspace Crossing Acceptance Message (ACP) - Airspace Crossing Counter-Proposal Message (XAP)-Airspace Crossing Reject Message (RJC) messages have been developed to permit the harmonised system-supported distribution of Airspace Crossing information.
5.5. COMMON OR SHARED USE OF AIRSPACE

5.5.1. Common Use of Airspace

5.5.1.1. An AMC can decide at ASM Level 2, in accordance with criteria defined at ASM Level 1, not to allocate specifically airspace as either CDR or TRA/TSA, or AMC-Manageable D and R areas. In such a case, the safe use of airspace in real time is subject to ASM Level 3 negotiation between the responsible ATS units and/or controlling military units concerned.

5.5.1.2. The corresponding ASM Level 3 negotiation rules agreed at ASM Level 1 should be reflected in LoAs established between the responsible ATS units and/or controlling military units concerned. These rules clearly define under which circumstances (nature of activity, civil/military coordination capability) airspace can be jointly used.

5.5.1.3. When the RCA procedure is in force, the LoAs should define the criteria required for the application of the PCA procedure with specific notice periods.

5.5.2. Shared Use of Airspace

5.5.2.1. It is possible to grant access to airspace, under suitable arrangements, between specific users and the ATS provider managing that airspace. In this scenario a specific airspace user may be given access to a specific volume of airspace under specific conditions where, under normal circumstances, this may not have been possible.

5.5.2.2. With the PCA procedure, it is possible to temporarily book airspace, for the use of specific users, which is located outside the major GAT traffic flows. A PCA is a given block of controlled airspace within which military or other specific activities can take place on an ad hoc basis with individual GAT transit allowed under rules specified in LoAs between units concerned.

5.5.2.3. A PCA will mainly be used to temporarily separate GAT operating in controlled airspace in a known traffic environment from high-speed military operations such as air combat training and formation flying. When military activities within a PCA cease or decrease, the RCA procedure will be initiated.

5.5.2.4. Another possibility consists in the temporary allocation of a published area (including Terminal Area) or a subdivision of it (e.g. a TMA Sector) usually under the responsibility of a defined ATS provider (e.g. civil ATS provider) to another ATS provider (e.g. military ATS provider). This area can be used autonomously to allow the conduct of a specific activity or can be merged with an active area in order to increase the volume of traffic controlled by the ATS provider concerned.

5.5.2.5. These arrangements shall be described in a LoA between the concerned parties.

5.6. ADDITIONAL ASM PROCEDURES

5.6.1. General

5.6.1.1. The procedures described above in para 5.2 to 5.5 are commonly used within the upper and lower controlled Airspace. However, due to somewhat different composition and nature of the lower airspace and the associated flying activities generated by General Aviation (e.g. recreational flying, air Sports etc.) and by the aerial work (e.g. environmental surveillance, firefighting, aerial photography etc.), additional ASM procedures have been implemented by States in order to meet the needs of all airspace users and to ensure that unnecessary restrictions are not imposed. These proposed “Best Practices” aim at assisting States to plan for or to enhance the implementation of the FUA within their lower airspace.
5.6.2 **Controlled Airspace**

5.6.2.1 **Change of Airspace Classification**

5.6.2.1.1 In order to increase the flexibility of use of the lower controlled airspace to all airspace users, the classification of the airspace could be adapted according to the type of activity. This could be translated into a change in airspace classification, i.e. downgrading, to allow usage by a wider customer group.

5.6.2.1.2 Such a flexible change of airspace classification shall be published in the AIP in order to inform the wider audience. The publication shall contain a clear definition of coordinates in latitude and longitude, the vertical dimension (lowest and highest level), the airspace classification associated with the related hours of activity (e.g. SR/SS, during the weekend etc.) and the contact details (telephone number/ RT frequency).

5.6.2.2 **Activate Method**

5.6.2.2.1 This method consists of predefined areas being promulgated as add-on areas to a published specific airspace or area, available on a dynamic basis.

5.6.2.2.2 The activate method may be appropriate for short notice demands, for protection of air traffic operating under specific conditions, or for activities which are known well in advance.

5.6.2.2.3 It is suggested that this method is not used within airspace classified as E to G as the main difficulty is the need of achieving a sufficient notification period, for all potential users, prior to "activating" a volume of airspace. However, a possible solution could be to publish the airspace in the AIP, including volume and time, and to accord it an A to D classification within timescales of predefined "activation".

5.6.2.3 **Terminal Areas (CTA, TMA, CTR)**

5.6.2.3.1 **General**

5.6.2.3.1.1 It is suggested that Terminal Areas, and their surrounding airspace, are of a classification that would not hinder flexibility, and are managed by defined entities between which coordination can be achieved.

5.6.2.3.1.2 It is possible to arrange the airspace structure to be fixed and/or cyclic. This would involve a portion of airspace being allocated, on a need basis, according to a long established timetable.

5.6.2.3.2 **Deactivate Method**

5.6.2.3.2.1 This applies to airspace which is notified for permanent use, or only during specified published times, by the ATM system but which is available to other airspace users under certain conditions.

5.6.2.3.2.2 AIPs must be annotated to show that this airspace may be available for use by other groups and any restrictions which apply to their use.

5.6.2.3.2.3 A change of the airspace classification may be required, i.e. downgrading from an A - D classification to an E - G classification, to allow usage by a wider customer group.
5.6.2.3.2.4 An example of this concept would be Terminal Airspace which would require use of a volume of airspace only for a certain runway direction or during periods of complex traffic loading.

5.6.2.3.2.5 Fig. 19 shows, in a simplistic form, a historic portion of Terminal Airspace containing an airport with the predominant use of RWY 27. Increasing traffic levels and size of aircraft result in severe difficulties when either RWY 22 or RWY 09 is used. A need for additional airspace to cater for those runways has been identified. The impact of creating additional controlled airspace has to be kept to a minimum.

![Figure 19: Terminal Airspace](image1)

5.6.2.3.2.6 Fig. 20 shows the same portion (as fig. 19) of Terminal Airspace with “deactivated” airspace. In this scenario the whole outline area (solid, bold and normal) would be promulgated as Terminal Airspace. The areas X, Y and Z (solid, normal, and dashed) would be annotated as those areas used only at certain times or under certain conditions, in this case Z when RWY 22 is in use and X and/or Y when RWY 09 is in use.

![Figure 20: Flexible Terminal Airspace](image2)
5.6.2.3.2.7 Fig. 21 shows a cross-section slice through Fig. 20. Although the areas X and Y are additional to the original Terminal Airspace (fig. 19), as they are situated at the extremities, they are only a relatively small amount of airspace, in both the vertical and horizontal plane. There is therefore a minimum amount of disruption to other users.

![Diagram of TMA cross section](image)

Figure 21: TMA cross section

5.6.3 **Outside of Controlled Airspace**

5.6.3.1 The main difficulty related to the application of FUA outside of controlled airspace is the way of informing in real time the users and/or the ATS providers about the current airspace structure and associated status.

5.6.3.2 Some Member States ensure that certain volumes of controlled airspace change the airspace classification to the classification of the surrounding airspace outside the hours of operation of the controlled airspace in order to make that airspace available to other users. Whilst the emphasis on this flexible use of airspace has traditionally focussed on the civil/military use of the airspace, there is also a need to address the civil/civil use of the airspace in order to maximise its availability to all users.

5.6.3.3 In order to ensure the maximum availability of airspace for all users, outside the notified hours of operation of a specific airspace (e.g. CTR, TMA, etc.) the airspace classification of that volume of airspace should revert to the background classification.

5.6.3.4 The hours of operation of such airspace may be notified for predetermined dates/ times in the national AIP; for other less determinate applications, by NOTAM.

5.6.3.5 Notifications of these applications and deactivation will generally be broadcast on the appropriate frequency, and/or announced by the flight information service (FIS).

5.6.3.6 In addition, some types of Special Requirements are currently used by various States in order to increase the knowledge of the ATS providers and other airspace users of the status and traffic situation inside the airspace concerned. The authority for these requirements comes from ASM Level 1 and provides ASM Levels 2 and 3 with additional influence:

- requirement for the carriage and use of radio within a classification that does not normally require it.

- requirement to ascertain current status of the airspace, in real time, prior to penetration. If having no knowledge the pilot must assume that penetration is not authorised.

- requirement for the carriage and use of transponder.
- changes to weather minima.
- requirement to submit a FPL.

5.6.4 **Promulgation and Notification**

5.6.4.1 The general methods of promulgation and notification remain as for the Concept. Consideration is required as to the possibility of widening the circulation of the AUP and the list of AAs, in order that the information reaches the required wider audience.

5.6.4.2 The AIP should contain sufficient information to assist the pilot in making the appropriate arrangements for flight safety. The items shall include:

- the volume name/code identifier;
- WGS coordinates;
- dimensions (lateral and vertical);
- times/days of operation;
- contact details (telephone number /RT frequency).

5.6.4.3 Different categories of airspace users may require differing notification processes and promulgation requirements, according to the classification/type of the subject airspace. All entities involved in the management and use of this airspace shall be included in the distribution lists of AUPs or a similar method (e.g. NOTAM) sufficient to achieve the required promulgation.

5.6.4.4 It remains a State decision to implement the most effective method of promulgation and notification based on its particular requirements.
SECTION 6

PUBLICATION OF ASM INFORMATION

6.1 AIP/NOTAM FOR ASM LEVEL 1 DECISION

6.1.1 An important national task at ASM Level 1 is to publish in national AIPs the status of airspace structures and ATS routes under its jurisdiction. Another task consists of the coordination of major events planned well in advance, such as large scale military exercises or air shows, which may require additional segregated airspace. These particular activities need to be published by AIS publication such as NOTAM.

6.1.2 In order to permit airspace users to become aware of the new flexible structures implemented in the ECAC States, the harmonisation and consistency of the publication of this information in AIPs is required.

6.1.3 Publication of vertical limits

6.1.3.1 ICAO in Annex 15 states that a detailed description of an ATS route shall be published, and that this shall include the publication of the upper and lower limits. The distinction and use of VFR FLs for vertical limits of control areas is prescribed by ICAO Annex 11, Chapter 2, paragraph 2.10.

6.1.3.2 In order to harmonise the publication of these limits in their AIPs, States should:

- above the lower limit or minimum en-route altitude and below FL290
- above FL290 and below FL410
- above FL410

 - Use VFR flight levels in accordance with ICAO Annex 2, Appendix 3, page 1 (e.g. FL035 or corresponding altitude,... FL285)
 - Use number representing the layer/intermediate level between IFR flight levels ending on __5 (e.g. FL295 ... FL405)
 - Use number representing the layer/intermediate level between IFR flight levels ending on __0 (e.g. FL420 ... FL500)

6.1.3.3 The lower limit specified for the upper ATS route constitute the upper vertical limit of the lower ATS route.
6.1.4 Publication of times/conditions

6.1.4.1 ICAO in Annex 15 does not define the format for published times of availability and other conditions in the AIP for ATS routes. It only states that such information should be inserted as remarks to the detailed description, complemented by the AIS Manual Doc 8126 description of ATS route tables for the AIP ENR chapter, illustrating the Remarks column using free, non-standardised text.

6.1.4.2 In order to harmonise AIP publication describing times and conditions when a CDR is available for flight planning in their AIPs, States SHOULD apply the following procedure.

6.1.4.3 In case of timely repetition in equal periods, information in the remarks column of the AIP ENR 3 should clearly describe the following situations for the route:

- If H24 period
 - Put in remark column, e.g. CDR1 H24.

- If CDR1 conditions apply for a certain period of time
 - Put in remark column, e.g. CDR1 23.00-05.00 (22:00 - 04:00), together with what happens outside this time period, i.e. not available and/or all other possible combinations.

- If weekly periods apply
 - For cases where the SCC is not yet implemented, put in remark column e.g. CDR1 MON-FRI 23.00-05.00 (22:00 - 04:00) and/or FRI 14.00 (13:00) – MON 06.00 (05:00); CDR2 other times and/or all other possible combinations.

- If extended Holiday period
 - For cases where the SCC is not yet implemented, put in remark column e.g. CDR1 H24 from 20 DEC to 07 JAN or according to Holiday (HOL) described in AIP GEN 2.1 and/or other AIS publications; CDR3 other times and/or all other possible combinations.

When the SCC is implemented, CDR1 status should be published in AIP with the indication “actual availability in accordance with conditions published daily in EAUP/EUUP”.

6.1.4.4 In case where only a portion of a route is published as being a CDR, and being a permanent route outside a time period, flight level or geographical boundaries, AIP publication SHOULD cover:

- The applicable CDR time period - apply above procedures;
- Different category (e.g. CDR 1 FL285 - FL460 MON - FRI 08.00(07.00) - 10.00(09.00), applicability of permanent use outside this period and FLs and/or all other possible combinations).
6.1.5 **Reserved/Restricted Areas Publication**

The general guidelines hereafter provided are fully aligned with ICAO publications, mainly Annex 2, Annex 11, Annex 15, and DOC 8126, and ERNIP part 1 (technical specifications).

6.1.5.1 **Harmonised CBA identification**

6.1.5.1.1 In order to ensure a harmonised identification of CBA across Europe, the following principles have been approved:

- A group of two letters (EU); followed by
- “C” (EAD DHO-5, rule 6 for CBA); followed by
- A group of up to 6 characters (preferably digits) unduplicated within ECAC.

6.1.5.1.2 In order to ensure the uniqueness of the designator, a centralised management of CBA identification in Europe has been agreed, with tasking ASMSG and its Secretariat to manage the process in close coordination with EAD.

6.1.5.1.3 Over the high seas, the harmonised CBA identification is not applicable. When D areas are established by different States on both sides of the FIR/UIR boundary and may be used jointly in accordance with bilateral agreements, their identification shall respect the provisions of ICAO Annex 11 section 2.31, and of the ASM Handbook 6.1.5.2 when applicable.

6.1.5.2 **Harmonized AIP ENR 5.1 Publication**

6.1.5.2.1 No publication of other than prohibited, restricted and danger areas in ENR 5.1.

6.1.5.2.2 No publication of AMC manageable areas in ENR 5.1., except those currently published.

Note 1: As currently R and D areas are managed at ASM Level 2, the actions for their replacement or modification as TRAs or TSAs will be initiated as required. These actions are not applicable in case of D-AMC manageable areas established over the high seas.

Note 2: In order to keep consistency, those States already publishing D-AMC manageable areas established over the high seas in ENR 5.1, will continue to use the same placeholder for any required new one.

6.1.5.2.3 Each P, R and D area shall be published based on the following rules:

a) **Identification:** EAR1A (EAR1AZ)

 Rules:
 1. Up to 8 (eight) characters composed of:
 - 2 (two): nationality letters for location indicator;
 - 1 (one): letter P, D or R;
 - 1 (one) - 3 (three): a number/s from 1 to 999; no leading “0” or “00” shall be used;
 - 1 (one): letter indicating area sub-part/s; the letter “Z” shall not be used;
 - 1 (one): letter “Z” as last character - in case of FBZ associated to the P, D and R area.
 - No type of sign or space to separate the elements comprising the identification.

b) **Name (if applicable):** EAR1A LEST (EAR1AZ LEST)

 Rules:
 - Identification and Name shall be separated by only one “space”.
 - Name composition is free and it is not part of the 10 characters rule applied for the identifier.
 - Only upper cases shall be used.
c) Area definition:
Rules:
- Coordinates defining the lateral limits of an area shall be enumerated in clockwise order. The first and the last published geographical coordinates shall be the same and term “to point of origin” shall not be used.
- Upper and lower limits shall be as specified in ERNIP Part 3 - ASM Handbook - paragraph 6.1.5.3. (check if format is in there)
- Use the abbreviation GND, SFC, AGL, AMSL, MSL, UNL, ALT, FL to indicate the reference datum, as appropriate.
- Indicate the units of measurement used (metres or feet) by placing the appropriate abbreviation after the figure.

6.1.5.3 Harmonized AIP ENR 5.2 Publication

6.1.5.3.1 No publication of prohibited, restricted and danger areas in ENR 5.2.

6.1.5.3.2 All AMC manageable areas shall be published in ENR 5.2., except those currently published in ENR 5.1.

Note 1: As currently R and D areas are managed at ASM Level 2, the actions for their replacement or modification as TRAs or TSAs will be initiated as required. These actions are not applicable in case of D-AMC manageable areas established over the high seas.

Note 2: In order to keep consistency, those States already publishing D-AMC manageable areas established over the high seas in ENR 5.2, will continue to use the same placeholder for any required new one.

6.1.5.3.3 Each area, except “TSA”, “TRA” and “CBA”, shall be published based on the following rules:

a) Identification
Rules:
- No requirement for identification.

b) Name (when and if required): NORTH EAST I or BLUE ANGEL NORTH or ADIZ SOUTH
Rules:
- Parts of the name shall be separated by only one “space”.
- There is no limitation for the number of characters.
- Only upper cases shall be used.

c) Area definition:
Rules:
- Coordinates defining the lateral limits of an area should be enumerated in clockwise order. The first and the last published geographical coordinates shall be the same and term “to point of origin” shall not be used.
- Upper and lower limits shall be specified as in ERNIP Part 3 - ASM Handbook - paragraph 6.1.5.5.
- Use the abbreviation GND, SFC, AGL, AMSL, MSL, UNL, ALT, FL to indicate the reference datum, as appropriate.
- Indicate the units of measurement used (metres or feet) by placing the appropriate abbreviation after the figure.
6.1.5.3.4 Each “TSA”, “TRA” and “CBA” shall be published based on the following rules:

a) Identification:

i. TSA, TRA, CBA area without FBZ

EATSA1C (EATSAC1) or EATRA2D (EATRAD2) or EACBA1N (EACBAN1) or EUCBA21E (see Note 2 below)

Rules:
- Up to 9 (nine) characters composed of:
 - 2 (two): nationality letters for location indicator or “EU” for new CBA;
 - 3 (three): letters TSA or TRA or CBA, only for the existing ones; or
 - 2 (two): letters “TS” or “TR” for TSA/TRA; or
 - 1 (one): letter “C” for the new CBA;
 - 1 (one) - 3 (three) for TSA/TRA: up to three characters with the last as a number; no leading “0” and “00” shall be used; or
 - 1 (one) - 4 (four) for TS/TR: up to four characters, with last as a number; no leading “0” and “00” shall be used;
 - 1 (one): letter indicating area sub-part/s; the letter “Z” shall not be used.
- No type of sign or space to separate the elements comprising the identification.

Notes:
1. The sequence of number/s and letter indicating sub-part is defined by States.
2. For the new CBA, after EUC, a unique combination of letters and numbers up to 6 (six) characters are allowed.
3. Nationality letters are those contained in Location Indicators (ICAO Doc 7910).
4. In case of NO sub-part is expected, up to four characters - can be used for TSA/TRA, and up to five characters can be used for TS/TR.

ii. TSA, TRA, CBA area with FBZ

EATSA1CZ (EATSAC1Z) or EATRA2DZ (EATRAD2Z) or EACBA1NZ (EACBAN1Z) or EUCBA21EZ (See Note 2 above)

Rules:
- Up to 9 (nine) characters composed of:
 - 2 (two): nationality letters for location indicator or “EU” for new CBA;
 - 3 (three): letters TSA or TRA or CBA, only for the existing ones; or
 - 2 (two): letters “TS” or “TR” for TSA/TRA; or
 - 1 (one): letter “C” for the new CBA;
 - 1 (one) - 2 (two) for TSA/TRA: up to two characters with the last as a number; no leading “0” shall be used; or
 - 1 (one) - 3 (three) for TS/TR: up to three characters, with last as a number; no leading “0” shall be used;
 - 1 (one): letter indicating area sub-part/s; the letter “Z” shall not be used;
 - 1 (one): letter “Z” as last character - in case of FBZ associated to the TSA, TRA, CBA area.
- No type of sign or space to separate the elements comprising the identification.

Notes:
1. The sequence of number/s and letter indicating sub-part is defined by States.
2. In case of NO sub-part is expected, up to three characters - can be used for TSA/TRA, and up to four characters can be used for TS/TR.
3. To avoid confusion, identification numbers shall not be reused for a period of at least one year after cancellation of the area to which they refer to.
b) Name (if applicable): EATSA1C LUC (EATSA1CZ LUC)
 Rules:
 - Identification and Name shall be separated by only one “space”.
 - The name composition is free; it is not part of the 10 characters rule applied for the identifier.
 - Only upper cases shall be used.

c) Area definition:
 Rules:
 - Coordinates defining the lateral limits of an area should be enumerated in clockwise order. The first and the last published geographical coordinates shall be the same and term “to point of origin” shall not be used.
 - Upper and lower limits shall be as specified in ERNIP Part 3 - ASM Handbook - paragraph 6.1.5.3.
 - Use the abbreviation GND, SFC, AGL, AMSL, MSL, UNL, ALT, FL to indicate the reference datum, as appropriate.
 - Indicate the units of measurement used (metres or feet) by placing the appropriate abbreviation after the figure.

6.1.5.4 Flight Plan Buffer Zone (FBZ) Publication

6.1.5.4.1 This paragraph provides fictitious examples of information to be published related to the introduction of the FBZ, and relevant placeholders in AIP for publication of related information.

GEN 2.2 Abbreviations used in AIS publications
*FBZ Flight Plan Buffer Zone

ENR 1.10 Flight planning
This section should include a description of the concept of FBZ and the applicable rules for IFR flight planning such as the following examples:
 - When applicable, for each reserved/restricted airspace, an FBZ has been established for IFR flight planning purposes only. Flight plans can be filed up to the boundary of the FBZ when active.
 - The route described in Item 15, shall consider the nominal track between two points according to the great circle shortest route.
 - Reserved/restricted airspace and the FBZ are notified when active by... [insert appropriate promulgation means].

ENR 5.1 Description of Prohibited, Restricted and Danger Areas / ENR 5.2 Military exercise and training areas and air defence identification zone (ADIZ)

<table>
<thead>
<tr>
<th>Identification, Name and Lateral Limits</th>
<th>Upper Limit</th>
<th>Lower Limit</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AABBCC</td>
<td>FL205</td>
<td>GND</td>
<td>(e.g. time of activity)</td>
</tr>
<tr>
<td>56 00 28N 011 16 56E - 55 54 13N 011 13 56E - 55 55 08N 011 07 41E - 56 01 18N 011 04 36E - 56 06 43N 011 10 26E - 56 00 28N 011 16 56E.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AABBCC Z</td>
<td>FL215</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>56 13 38N 011 10 31E - 56 00 57N 011 23 42E - 55 49 54N 011 18 22E - 55 52 13N 011 02 36E - 56 01 48N 010 57 47E - 56 13 38N 011 10 31E.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Note 1: Harmonising publication rules for identification, name and area definition in ENR 5.1 and ENR 5.2, see paragraphs 6.1.3, 6.1.5.2 and 6.1.5.3.

ENR 5.1 and ENR 5.2 publication of FBZ with multiple vertical/lateral limits within the same airspace volume.

In cases where the FBZ has different lateral limits (horizontal shape) depending on the vertical dimension, the following publication guidance applies:

- The definition of a FBZ with multiple vertical/lateral limits is published in the Remarks column, informing that the FBZ consists of separate areas and a listing of these parts. This publication is sufficiently describing the lateral limits of the total FBZ airspace volume. The upper and lower limits shall cover the total vertical limits of all involved parts. The identification of the FBZ is assigned in accordance with the general rules for a FBZ.
- Each separate part is published with their vertical/lateral limits.
- The FBZ consisting parts cannot be activated separately. The definition of the separate parts is only for the purpose of accurately describing the shape (horizontally and vertically) of the FBZ.
- The sum of the consisting parts covers the entire FBZ. The resulting FBZ is a contiguous airspace volume without any gaps.

<table>
<thead>
<tr>
<th>Identification, name and lateral limits</th>
<th>Upper Limits</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AABBCCZ</td>
<td>FL205, GND</td>
<td>(e.g. time of activity)</td>
</tr>
<tr>
<td>PART 1</td>
<td>FL215, GND</td>
<td>AABBCCZ consists of:</td>
</tr>
<tr>
<td>PART 2</td>
<td>FL215, 5000FT</td>
<td>PART 1</td>
</tr>
</tbody>
</table>

^23Note 2: Harmonising publication rules for identification, name and area definition in ENR 5.1 and ENR 5.2, see paragraphs 6.1.3, 6.1.5.2 and 6.1.5.3.

^23The flights using the split altitude between different parts will be assigned to the upper part and processed by the NM systems accordingly.
6.1.5.4.2 In case of CBA with defined FBZ, or when only the FBZ is crossing the national borders and/or the boundaries of an FIR, the publication requirements should be part of an Agreement between appropriate organisations in neighbouring States. It is recommended that, when only the FBZ is crossing national borders and/or the boundaries of an FIR, the State publishing the reserved/restricted area should be also responsible for the publication of the FBZ.

6.1.5.4.3 Both the reserved/restricted airspace and the FBZ will be uploaded in the CACD.

6.1.5.4.4 The totality of the airspace to be avoided shall be notified to the users, for flight planning purposes, by appropriate means of notification.

6.1.5.4.5 AUP/UUP should be considered the primary means of notification of planned activation for reserved/restricted airspace. For non AMC manageable areas, States should consider their requirements for notification to airspace users also via AIS publications (e.g. NOTAM). In all cases, when FBZ is applicable, both reserved/restricted airspace and the FBZ should be notified, with identification, coordinates and time period of activation.

6.1.5.4.6 When utilising the AUP/UUP, the required activation of FBZ, as described in AIP, will be properly notified via CIAM/ASM tools. Airspace users will be notified subsequently via EAUP/EUUP.

6.1.5.4.7 When ad-hoc areas are established and the application of the horizontal/vertical FBZ is required, adequate publication (e.g. NOTAM or AIP Supplement) should be provided. If the daily notification of the ad-hoc areas activation is expected via AUP/UUP, same procedures of 6.1.5.4.5 should be applied. The inclusion of the FBZ within the limits of the defined ad-hoc areas may be considered in order to simplify the publication. In case of partial vertical activation (level bands) of the reserved/restricted areas, the vertical FBZ should be considered within the vertical limits of the level bands required.

6.1.5.4.8 In case of modular areas, the combination of modules allocated should be notified via AUP/UUP, including the activation of FBZs, if required. IFPS will validate the FPLs against each module, including the associated FBZ, in order to detect whether the trajectory is passing through one or more of the modules, including the associated FBZs. In case of the trajectory is passing through a module and the overlapping FBZ of the adjacent module, IFPS will consider the interaction with both of them.

6.1.5.5 Publication Vertical Limits

For the publication of the upper and lower limits of military exercise and training areas and air defence identification zones (ADIZ) in their AIPs States should apply the criteria described in 6.1.3.2. In specific, FLs should be used for the description of vertical limits above the Transition Altitude; the identified FLs should consider the local QNH variations historically registered.

6.1.5.6 Publication of Activation Time

The description of activation time, the system used and means of activation announcements and whether AMC Manageable or not should be provided according to the guidelines described in ERNIP Part 1, paragraphs 7.2.8.

6.1.5.7 Publication of FUA/EU restrictions

According to common agreements, FUA Restrictions should be published in the RAD document, according to the guidelines described in ERNIP Part 4 RAD Users Manual. Nevertheless, States could decide to publish the FUA restriction associated to a specific area also in national AIPs. In these cases, the FUA restrictions should be described in the remark column, with the general advice “The activation of the FUA restriction is notified via EAUP/EUUP or NOTAM as appropriate”. Information related to EU Restrictions is
published by AIP Supplement, AIC, or NOTAM. EU Restrictions are not published in the RAD document but are available via B2B and published via the NOP.

6.1.5.8 Means of Notification

AUP/UUP should be considered the main source, for FPL purposes, to notify airspace users about the status of airspace structures managed via AUP/UUP as described in Annex 5 and 6. The AUPs/UUPs update automatically the NM CACD database, therefore its information is used by IFPS for FPL validation purposes. AUPs/UUPs are not planned to replace, unless a State decision, AIS notifications (e.g. AIP supplements, NOTAMs) that remains a national responsibility. Nevertheless, focusing on the FPL process, States should provide coherent information to the airspace users whenever both notification means are used. In this respect, airspace users should consider AUP/UUP information as the reference source for filing FPLs. States should ensure that AIS notification constantly reflects the AUP/UUP information. In case of the information is published before via AIS notification, the most appropriate AUP/UUP should be used accordingly in order to ensure consistency in the NM CACD database for FPL purposes. With specific regards to the notification of reserved/restricted areas activation, AUPs/UUPs provide information on associated restrictions (FUA/EU restrictions) relevant for FPL purposes.

6.1.5.9 Airspace classification

The airspace volume of a published reserved/restricted area acquires the same classification of the surrounding airspace whenever the area is not active. When the area is active, according to the type of operations allowed, no airspace classification or a specific one defined by the State is applied. In case of tactical crossing by non-participating aircraft, the type of Air Traffic Service provided according to the reference airspace classification is ensured. Local agreements should define the responsible units for the provision of expected ATS.

6.2 SPECIFIC ASM MESSAGES FOR ASM LEVEL 2 DECISIONS

6.2.1. Airspace Use Plan (AUP)

6.2.1.1. The effective application of the FUA Concept requires that ASM Level 2 airspace allocation decisions are promulgated daily in an efficient, timely and accurate manner by each AMC by means of a national Airspace Use Plan message (AUP).

6.2.1.2. The AUP is transmitted in a common harmonized format to NM’s dedicated interface for ASM and is published as soon as possible and not later than by or 15.00 UTC (14.00 UTC Summer) to cover the 24 hour time period between 0600 UTC the reference day to 0600 UTC the day after. Several AUPs can be sent in one sequence on the last day before the closure of the AMC to cover each day of a week-end or “Holidays” period, but with a maximum of seven consecutive days. The AUP is transmitted to AAs, ACCs/FMPs and to the CADF. From D-6 to D-2 DRAFT AUPs are promulgated whenever airspace plan information is available.

6.2.1.3. In order to automate the AUP process within AMCs and AAs, to allow the automatic storage and display of AUPs in ACCs/FMPs, AUPs should be prepared and distributed to the CADF/AME by means of the common CIAM software set up in NM terminals or submitted by other ASM tools via B2B.

24 Full management of information subject to the implementation of system support required.
25 It could be the same classification of the surrounding airspace or another ICAO classification, according to the specific requirements of the operations allowed within the area.
6.2.2. **Updated Airspace Use Plan (UUP)**

6.2.2.1. After the AMC has completed the allocation process, modification of the airspace allocation might be necessary in order to take advantage of the cancellation of any previously reserved airspace structure. Changes to the airspace allocation will be effected by the AMC through UUPs.

6.2.2.2. UUPs will replace the current AUP and previous UUPs according to the validity time described in the procedure. It reflects the new plan with the aim of improving the awareness of updated airspace status. All changes will be visible, according to the criteria described in Annex 6.

6.2.2.3. The UUPs information will be used by NM/CADF to produce eAMI messages as well as being available on the NOP portal. According to the CDRs and/or areas change status, Re-Routeing Proposals (RRPs) messages will be provided to interested users.

6.2.2.4. The Re-Routing proposed will contain new available CDRs segments and/or Point-DCT-Point information based or areas volumes released (more relevant in FRA environment).

6.2.2.5. The UUP is published in the same common format as the AUP. The UUPs will be published according to the current procedures described in paragraphs 4.8.3 and 4.8.4.

6.2.2.6. The UUP is transmitted to the relevant AAs, ACCs/FMPs, and the NM/CADF. Through the CIAM application the published UUPs will be visible to the other AMCs. However, UUPs is not published when there are no alterations to the current AUP.

6.2.2.7. In order to automate the UUP process within AMCs and AAs to allow for the automatic storage and display of UUPs, UUPs should be prepared by means of the CIAM software set up in NM terminals or submitted via B2B.

6.2.3 **Electronic Airspace Management Information (eAMI)**

6.2.3.1 eAMI or electronic Airspace Management Information is an electronic message containing all airspace allocations (ASM Level 1 and ASM Level 2) and the derived availability of CDRs2 and the declaration of unavailability closure of CDRs1 and ATS routes for flight planning.

6.2.3.2 Through eAMI, authorised users can query and compare CDR/Route Availability and Airspace Allocations. This should be normally available via NM web services in accordance with a service agreement signed between user and NM.

6.2.3.3 Through consolidated and validated electronic eAMI messages users can therefore make full use of the benefits offered by automated data processing.

6.2.3.4 The eAMI message is processed automatically to airspace users via B2B service. In case of interruption of the B2B service, the eAMI message in its format or other feasible format is normally made available for airspace users through other means of notification (e.g. NOP Portal or email).
SECTION 7

PERFORMANCE REQUIREMENTS

7.1 GENERAL

7.1.1 Introduction

7.1.1.1 An important task at ASM Levels is the continuous monitoring of the efficiency of the application of the FUA Concept. This Section contains information regarding FUA Indicators developed and used for the assessment of the efficiency of the national application of the FUA Concept.

7.1.1.2 EUROCONTROL Specification for the Application of the Flexible Use of Airspace (FUA) recommends that national HLAPB should apply the following key performance areas/indicators, where applicable (see: chapter 8, page 47, PERF-REQU-03):
 a) airspace efficiency (FUA application, adherence to optimum airspace dimensions, utilisation of airspace, efficient booking system);
 b) mission effectiveness (economic impact of transit, impact of airspace location on training);
 c) flexibility (training in non-segregated areas, release of airspace, accommodation of short notice civil and military needs).

7.1.1.3 In order to ensure above mentioned the HLAPB should:
 a) establish joint civil/military processes for the periodic (at least yearly) assessment of airspace efficiency and effectiveness of procedures at all three ASM Levels;
 b) ensure the definition and application of FUA Key Performance Areas (KPA) and Indicators (KPI) to monitor ATM performance against civil and military airspace users needs at national and network level;
 c) assess FUA effectiveness in terms of the impact on civil and military airspace users, ATM service provision and civil/military co-ordination;
 d) ensure the use of KPAs of safety, capacity, cost-effectiveness and environment to measure the efficient and flexible use of airspace procedures and operations.

7.1.1.4 Apart from those FUA Indicators (described under para 7.1.2) EUROCONTROL, in cooperation with stakeholders, developed and implemented PRISMIL (Pan-European Repository of Information Supporting Military) performance management system. PRISMIL, with its 8 KPIs, complements civil-military ATM performance-based partnership both at national and pan-European level. More on the civil-military ATM performance is to be found on dedicated section of the EUROCONTROL web site.

7.1.2 FUA Indicators

7.1.2.1 The development of FUA Indicators for the assessment of the efficiency of the application of the FUA Concept in the ECAC States started with the work in the Ad Hoc Group on FUA Indicators (AHGOFI) and continued in the FUA DG. The methods and algorithms described hereafter are based on what was developed by the AHGOFI and FUA DG and agreed by the ANT in regard to FUA Indicators development.

7.1.2.2 The FUA Indicators are developed in the broader context of the monitoring of the ATM performances against civil and military airspace users needs and for the assessment of
the FUA effectiveness in terms of impact on civil and military airspace users, ATM services provision and civil/military co-ordination.

7.1.2.3 Two categories of indicators were developed - the FUA Use Rates (FUR) Indicators and the Flight Economy Indicators (FEI).

7.1.2.4 The FUA Use Rates Indicators are meant to provide information about the rate of availability of the FUA airspace structures and about the interest of the users in those structures.

7.1.2.5 The Flight Economy Indicators provide information about the possible economy gained or lost - in terms of distance, flying time or fuel consumption - to be expected by the users while using FUA airspace structures.

7.1.3 **Definitions**

Interested flight: A flight becomes ‘interested’ in a certain route if that route is the shortest possible available.

Recorded flight: Flight Plan Data for a specific flight as recorded Archive System of the NM (ARC).

Alternate route: The shortest route on which a flight will re-route as a consequence of a certain route segment becoming unavailable.

Busy Friday: Friday between 1st of May and 31st of October on which, upon international agreement, early access from 1000 UTC (1100 UTC Winter) to CDRs (weekend routes) is possible.

7.1.4 **Acronyms**

- **AFE**: Actual Flight Economy
- **AHGOFI**: Ad Hoc Group on FUA Indicators
- **ALTN**: Alternate route
- **ARFL**: Total Number of Aircraft having filed an FPL on a CDR or through a reserved/restricted airspace during a given time period
- **ANRF**: Total Number of Aircraft having filed an FPL/RPL on the ALTN of a CDR or a reserved/restricted airspace during a given time period
- **ARC**: Archive System of the NM
- **AU**: Total Number of Aircraft having actually used a CDR or flown through a reserved/restricted airspace during a given time period
- **BDI**: Better Traffic Distribution Indicators
- **FEI**: Flight Economy Indicators
- **FEL**: Flight Economy Lost
- **FEO**: Flight Economy Offered
- **FER**: Flight Economy Realised
- **FUA DG**: Flexible Use of Airspace Drafting Group
- **FUR**: FUA Use Rates
- **ICI**: Increase in ATM System/Sector Capacity Indicators
- **OD**: Total Opening Hours of a CDR or a reserved/restricted airspace between 0400 UTC and 2200 UTC
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>Total Opening Hours of a CDR or a reserved/restricted airspace between 2200 UTC and 0400 UTC</td>
</tr>
<tr>
<td>OPS LOG</td>
<td>NM recording of the daily live operations on their static databases</td>
</tr>
<tr>
<td>PFE</td>
<td>Potential Flight Economy</td>
</tr>
<tr>
<td>PFER</td>
<td>Potential Flight Economy Rate</td>
</tr>
<tr>
<td>PU</td>
<td>Average Number of Potential Users of an available CDR or a reserved/restricted airspace during a given time period</td>
</tr>
<tr>
<td>RAI</td>
<td>Rate of Aircraft Interested for a CDR or a reserved/restricted airspace</td>
</tr>
<tr>
<td>RAU</td>
<td>Rate of Actual Use of CDR or reserved/restricted airspace</td>
</tr>
<tr>
<td>RDI</td>
<td>Reduction in Delays Indicators</td>
</tr>
<tr>
<td>RoAA</td>
<td>Rate of Airspace Availability (used for FRA operations)</td>
</tr>
<tr>
<td>RoCA</td>
<td>Rate of CDR Availability</td>
</tr>
<tr>
<td>SR1</td>
<td>Length (in NM) of a CDR. In the case of FRA environment, it represents the length in NM of the direct route defined by the entry point to the exit point of a free route airspace, which crosses through a reserved/restricted airspace.</td>
</tr>
<tr>
<td>SR6</td>
<td>Length (in NM) of an ALTN. In the case of FRA environment, it represents the length in NM of a route which avoids a reserved/restricted airspace.</td>
</tr>
<tr>
<td>TA</td>
<td>Total Number of Aircraft having filed an FPL/RPL on a CDR or its ALTN during a given time period. In the case of FRA environment, it represents the Total Number of Aircraft having filled and FPL/RPL through or around a reserved/restricted airspace.</td>
</tr>
<tr>
<td>TPFE</td>
<td>Total Potential Flight Economy</td>
</tr>
<tr>
<td>TWAI</td>
<td>Time Window of Availability Indicator</td>
</tr>
</tbody>
</table>

7.2 FUA USE RATES (FUR)

7.2.1 Rate of CDR Availability (RoCA)

Definition:

RoCA represents the average CDR availability according to the EAUP/EUUP related to a given time period.

RoCA represents (in %) the ratio of the total CDR segment opening, whatever category it may be, to the total time of days (D) during a given time period.

RoCA is balanced according to the fact that:

- 96% of GAT is operating between 0400 and 2200 UTC (18 hours in total)
- CDRs are very often available between 2200 and 0400 UTC (6 hours in total) but, on average, only 4% of the traffic is operating during this period.

Usage:

RoCA computed individually:

- assessment of a particular CDR in order to determine the potential for re-categorisation; or
- the effectiveness of the negotiation process (at ASM Level 1 and ASM Level 2 for their respective roles).

RoCA computed as an average:
- assessment of the effectiveness of a certain AMC – for an analysis made at the national level; or
- assessment of the effectiveness of FUA operations in general – for an analysis made at the level of ECAC.

7.2.1.3 **Formula:**

\[
\text{RoCA} = \frac{(OD \times 0.96)}{(TD_{def} \times D)} + \frac{(ON \times 0.04)}{(TN_{def} \times D)}
\]

For cases where the SCC is not yet implemented, for a CDR1/2 the following method to compute the OD and ON is proposed:

![Diagram of flight levels](image)

In the figure above, FL0 means the lowest FL available for a given CDR segment and FL4 represents the highest FL available for the same CDR. As can be observed, the route may have a different definition on each layer of flight levels (CDR1 between FL0 and FL1, CDR2 between FL1 and FL2, etc).

The following formula is proposed for determining the OD and ON for such a CDR segment:

\[
OD = \sum_j (OD_{CDR1j} \times R_j) + \sum_k (OD_{CDR2k} \times R_k)
\]

Where

\[
R_j = \frac{(\text{maxFL}_j - \text{minFL}_j)}{(\text{maxFL}_{\text{route}} - \text{minFL}_{\text{route}})}^{26}
\]

OD (opening hours during the day) is the sum of all the ODs for each level band balanced with the report between the vertical dimension of the level band and the vertical dimension of the entire route.

D represents the number of days.

TD_{def} (time during the day from the definition) represents the CDR availability time in number of hours during the day (from 04:00 to 22:00 UTC) from the CDR’s definition from the national AIP.

TN_{def} (time during the night from the definition) represents the CDR availability time in number of hours during the night (from 22:00 to 04:00 UTC) from the CDR’s definition from the national AIP.

Note: For the CDRs (type 1 or type 2) which are defined across an entire day (H24) the value of the TD_{def} is 18 and the value of TN_{def} is 6.

26 Expressed in number of FLs. "min/max FLroute" stands for the vertical CDR limits in accordance with CDR’s definition from the national AIP.
J and k represent elementary CDR’s route segments referred to the national AIP CDR’s definition.

And

OD_{CDR1j} and OD_{CDR2k} are obtained by collecting the availability information (published in the AIP and in the EAUP/EUUP).

A similar formula is used to obtain the ON (opening hours during the night):

\[ON = \sum_j (ON_{CDR1j} \times R_j) + \sum_k (ON_{CDR2k} \times R_k) \]

7.2.2 Rate of Airspace Availability (RoAA)

7.2.2.1 Definition:

RoAA represents the average reserved/restricted airspace availability according to the EAUP/EUUP related to a given time period. In a Free Route Airspace environment, “reserved/restricted airspace reservation” refers to airspace of defined horizontal and vertical dimensions allocated for exclusive use of specific users, e.g. TSA, TRA. These are specific designated airspace where both civil and military activities could take place. Depending on the status of the airspace reservations (active or inactive) and the type of reservation (segregated or restricted) the non-participating airspace users are permitted or not to flight plan routings through these airspace reservations.

RoAA represents (in %) the ratio of the total reserved/restricted airspace opening time, whatever type it may be, to the total time of days (D) during a given time period.

RoAA is balanced according to the fact that:
- 96% of GAT is operating between 0400 and 2200 UTC (18 hours in total)
- Reserved/restricted airspace is very often available between 2200 and 0400 UTC (6 hours in total) but, on average, only 4% of the traffic is operating during this period.

7.2.2.2 Formula:

\[RoAA = \frac{(OD \times 0.96)}{(TD_{def} \times D)} + \frac{(ON \times 0.04)}{(TN_{def} \times D)} \]

A reserved/restricted airspace could be allowed for civil use on its entire vertical dimension or on level bands (the rest being restricted for civil use).

In the figure above, FL0 means the lowest FL available for a given reserved/restricted airspace and FL4 represents the highest FL available for the same airspace, as they are defined in the national AIP. As it could be noted, the airspace may have a different status on each layer of flight levels: FL0 to FL1 active (restricted for civil use), FL1 to FL2 inactive.
Airspace Management Guidelines - The ASM Handbook -

(permited for civil use), FL2 to FL3 active segregated (forbidden for civil use) and FL3 to FL4 inactive.

The following formula is proposed for determining the OD and ON for a reserved/restricted airspace which is managed using level bands:

\[
OD = \sum_j (OD_j \times R_j)
\]

Where

\[
R_j = \frac{(\text{maxFL}_j - \text{minFL}_j)}{\text{maxFL}_{\text{area}} - \text{minFL}_{\text{area}}}^{27}
\]

\(OD\) (**opening hours during the day**) is the sum of all the ODs for each level band balanced with the report between the vertical dimension of the level band and the vertical dimension of the entire airspace as defined in the national AIP.

\(D\) represents the number of days.

\(TD_{\text{def}}\) (**time during the day from the definition**) represents the CDR availability time in number of hours during the day (from 04:00 to 22:00 UTC) from the CDR’s definition from the national AIP.

\(TN_{\text{def}}\) (**time during the night from the definition**) represents the CDR availability time in number of hours during the night (from 22:00 to 04:00 UTC) from the CDR’s definition from the national AIP.

Note: For the CDRs (type 1 or type 2) which are defined across an entire day (24H) the value of the \(TD_{\text{def}}\) is 18 and the value of \(TN_{\text{def}}\) is 6.

\(j\) represents the elementary airspace level bands in accordance with airspace definition from the national AIP.

And

\[
OD_j\]

are obtained by collecting the availability information (published in the AIP and in the EAUP/EUUP).

A similar formula is used to obtain the ON (**opening hours during the night**):

\[
ON = \sum_j (ON_j \times R_j)
\]

7.2.3 **Rate of Aircraft Interested (RAI)**

7.2.3.1 Definition:

RAI represents the average number of aircraft interested in filing flight plans to take advantage of an available CDR or an unallocated reserved/restricted airspace (in the case of FRA environment)

RAI represents (in %) the ratio of the number of flights planned on an available CDR or through an unallocated reserved/restricted airspace to the number of potential users of this CDR or airspace.

7.2.3.2 Usage:

RAI computed individually:

27 Expressed in number of FLs. "min/maxFLarea" represents the vertical area limits in accordance with the national AIP area definition.
- assessment of a particular CDR in order to determine the potential for re-categorisation; or
- the effectiveness of the negotiation process (at ASM Level 1 and ASM Level 2 for their respective roles).
- assessment of network impact for a particular reserved/restricted airspace.

RAI computed as an average:
- assessment of the effectiveness of a certain AMC – for an analysis made at the national level; or
- assessment of the effectiveness of FUA operations in general – for an analysis made at regional or ECAC level.

7.2.2.3 Formula: The total number of aircraft (TA) having filed an FPL/RPL on a CDR or its alternate, or crossing through an unallocated reserved/restricted airspace is balanced according to the Rate of CDR Availability (RoCA) or Rate of Airspace Availability (RoAA) in order to represent the Potential Users (PU) of this CDR or airspace.

RAI = ARFL/PU
where:

PU = ARFL + (ANRF x RoCA) or
PU = ARFL + (ANRF x RoAA) in case of FRA environment

7.2.4 Rate of Actual Use of CDR or reserved/restricted airspace (RAU)

7.2.4.1 Definition:
RAU represents the average number of aircraft having actually used an available CDR or having actually flown through an unallocated reserved/restricted airspace during a given time period.
RAU represents (in %) the ratio of the number of flights (AU) having actually used an available CDR or having actually flown through an airspace to the number of potential users (PU) of this CDR or airspace.

7.2.4.2 Usage:
RAU computed individually:
- assessment of a particular CDR in order to determine the potential for re-categorisation; or
- the effectiveness of the negotiation process (at ASM Level 1 and ASM Level 2 for their respective roles).
- assessment of network impact for a particular reserved/restricted airspace.

RAU computed as an average:
- assessment of the effectiveness of a certain AMC – for an analysis made at the national level; or
- assessment of the effectiveness of FUA operations in general - for an analysis made at regional or ECAC level.
This indicator has been developed with the aim of giving information as close as possible to the actual usage of the airspace.

7.2.4.3 **Formula:**

RAU = AU / PU

where

PU = ARFL + (ANRF x RoCA) or
PU = ARFL + (ANRF x RoAA) in case of FRA environment

7.2.5 **Time Window of Availability (TWAI)**

7.2.5.1 **Definition:**

This indicator gives, for a time period to be assessed each day, the number of occurrences of similar time-windows in the opening of a CDR segment or a reserved/restricted airspace in a certain FIR/UIR.

It could also be used to highlight - for one day only of operation investigated - windows of opening of less than a value determined as being the minimum required to enable flight planning.

7.2.5.2 **Usage:**

TWAI computed for one day of operation: assessment of a particular CDR or a reserved/restricted airspace in order to determine the effectiveness of the negotiation process (at ASM Level 1 and ASM Level 2 for their respective roles) based on the number of hour of opening and on the size of the windows of opening.

TWAI computed as a sum for more than one day of operations:

- assessment of the negotiation effectiveness of a certain AMC - for an analysis made at the national level; or
- assessment of the effectiveness of FUA operations in general - for an analysis made at the level of ECAC.

7.2.5.3 **Formula:** For example, the horizontal segments in Table 1 below represent the time window of opening of a certain CDR for the same day (e.g. Monday) in each week assessed. The hours are the numbers on top of the Table 1 and the numbers at the bottom of Table 1 represents the sum of occurrences for the whole period assessed.

This indicator could be complemented with data on TRA/TSA activity period.

Table 1
7.2.5.4 Publication: The results can be presented in different formats as follows:

Table 2

<table>
<thead>
<tr>
<th>Runway ID</th>
<th>From Point</th>
<th>To Point</th>
<th>From Segment</th>
<th>To Segment</th>
<th>Final Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LHR</td>
<td>LGW</td>
<td>100</td>
<td>0</td>
<td>90</td>
</tr>
<tr>
<td>2</td>
<td>LHR</td>
<td>LGW</td>
<td>50</td>
<td>0</td>
<td>45</td>
</tr>
</tbody>
</table>

where the results are given for all the CDR segments assessed but summed up for the whole period analysed, or

Table 3

<table>
<thead>
<tr>
<th>Runway ID</th>
<th>From Point</th>
<th>To Point</th>
<th>From Segment</th>
<th>To Segment</th>
<th>Final Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LHR</td>
<td>LGW</td>
<td>100</td>
<td>0</td>
<td>90</td>
</tr>
<tr>
<td>2</td>
<td>LHR</td>
<td>LGW</td>
<td>50</td>
<td>0</td>
<td>45</td>
</tr>
</tbody>
</table>

where the results are given for all the CDR segments assessed but for only one day of operations.

The following pie chart representation may be used to better visually compare the differences in values, here in a case where the SCC is not yet implemented.
7.3 FLIGHT ECONOMY INDICATORS (FEI)

7.3.1 General

The flight economy indicators described hereafter are by default expressed in nautical miles (NM). The values obtained could be translated into fuel, time or emissions. This translation can be performed using different coefficients to be multiplied with the result in NM as follows:

- Savings in fuel = \{indicator value in [NM]\} x coef. F [metric tones of fuel/NM];
- Savings in time = \{indicator value in [NM]\} x coef. T x 60 [minutes/NM].

Coeff. F: average consumption of fuel in metric tones/NM
Coeff. T: average speed in kts

7.3.2 Potential Flight Economy (PFE)

7.3.2.1 Definition:

PFE represents flight economy to be potentially realised using a particular CDR or a reserved/restricted airspace made available H24.

PFE represents (in NM), the economy realised by using a CDR instead of its alternate (ALTN). In the case of FRA operations, PFE represents (in NM) the economy realised by flying through a reserved/restricted airspace rather than avoiding it.

The PFE indicator would be used in all the following indicators, as it is the basis for the computation of the flight economy.

7.3.2.2 Usage:

PFE computed individually:

- assessment of a particular CDR in order to determine the potential for re-categorisation or the effectiveness of the negotiation process (at ASM Level 1 and ASM Level 2 for their respective roles);
- the value could also be used to influence the airspace design in the area of that CDR
- assessment of network impact for a particular reserved/restricted airspace in the case of FRA environment

PFE computed as an average:

- assessment of the effectiveness of a certain AMC by determining the average routeing optimisation offered by the FUA structures - for an analysis made at the national level; or
- assessment of the effectiveness of FUA operations in general - for an analysis made at regional or ECAC level.

7.3.2.3 Formula:

\[
PFE = SR6 - SR1 \text{ [NM]}
\]
7.3.3 **Total Potential Flight Economy (TPFE)**

7.3.3.1 **Definition:**

TPFE represents flight economy to be realised by all the aircraft potentially interested (TA) in using a CDR or a reserved/restricted airspace made available H24.

TPFE represents (in NM), the economy realised in using a CDR instead of its alternate route (ALTN). In the case of FRA operations, TPFE represents (in NM) the economy realised by flying through a reserved/restricted airspace rather than avoiding it.

7.3.3.2 **Usage:**

TPFE computed individually:

- assessment of a particular CDR in order to determine the potential for recategorisation; or
- the effectiveness of the negotiation process (at ASM Level 1 and ASM Level 2 for their respective roles).
- assessment of network impact for a particular reserved/restricted airspace in the case of FRA environment

TPFE computed as a total:

- assessment of the effectiveness of a certain AMC - for an analysis made at the national level; or
- assessment of the effectiveness of FUA operations in general - for an analysis made at regional or ECAC level.

The comparison between the value of this indicator and the FER and FEO indicators may give an indication of the current potential of a particular CDR.

7.3.3.3 **Formula:**

\[
TPFE = TA \times PFE \text{ [NM]}
\]

7.3.4 **Flight Economy Realised (FER)**

7.3.4.1 **Definition:**

FER represents flight economy realised (in NM) by flights having filed FPLs (ARFL) in order to use an available CDR or a reserved/restricted airspace

7.3.4.2 **Usage:**

FER computed individually:

- assessment of a particular CDR in order to determine the potential for recategorisation; or
- the effectiveness of the negotiation process (at ASM Level 1 and ASM Level 2 for their respective roles).
- assessment of network impact for a particular reserved/restricted airspace in the case of FRA environment

FER computed as a total:

- assessment of the effectiveness of a certain AMC – for an analysis made at the national level; or
- assessment of the effectiveness of FUA operations in general – for an analysis made at regional or ECAC level.
7.3.4.3 Formula:

\[\text{FER} = \text{ARFL} \times \text{PFE} \ [\text{NM}] \]

7.3.5 **Flight Economy Lost (FEL)**

7.3.5.1 Definition:

FEL represents flight economy potentially lost (in NM) by users NOT having filed a FPL to take advantage of a CDR made available or an available reserved/restricted airspace.

7.3.5.2 Usage:

- assessment of a particular CDR in order to determine the potential for re-categorization; or

- the effectiveness of the negotiation process (at ASM Level 1 and ASM Level 2 for their respective roles).

- assessment of network impact for a particular reserved/restricted airspace in the case of FRA environment

FEL computed as a total:

- assessment of the effectiveness of a certain AMC - for an analysis made at the national level; or

- assessment of the effectiveness of FUA operations in general - for an analysis made at regional or ECAC level.

7.3.5.3 Formula:

\[\text{FEL} = \left(\text{ANRF} \times \text{RoCA} \right) \times \text{PFE} \ [\text{NM}] \]

where:

- \(\text{ANRF} \times \text{RoCA} \) represents the total number of flights that may use a CDR but the flight plan route is through the alternate of that CDR.

For FRA environment:

\[\text{FEL} = \left(\text{ANRF} \times \text{RoAA} \right) \times \text{PFE} \ [\text{NM}] \]

where

- \(\text{ANRF} \times \text{RoAA} \) represents the total number of flights that may fly through a reserved/restricted airspace but the flight plan route is avoiding this airspace.

7.3.6 **Flight Economy Offered (FEO)**

7.3.6.1 Definition:

FEO represents flight economy (in NM) to be realised by Potential Users (PU) of a CDR or a reserved/restricted airspace made available.

FEO represents also Flight Economy Realised (FER) by flights (ARFL) having filed FPLs in order to use an available CDR or a reserved/restricted airspace and Flight Economy (FEL) that could have been saved by users (ANRF) NOT having filed a FPL on that available CDR or through that available airspace.
7.3.6.2 **Usage:**

FEO computed individually:

- assessment of a particular CDR in order to determine the potential for re-categorization; or
- the effectiveness of the negotiation process (at ASM Level 1 and ASM Level 2 for their respective roles).
- assessment of network impact for a particular reserved/restricted airspace in the case of FRA environment

FEO computed as a total:

- assessment of the effectiveness of a certain AMC - for an analysis made at the national level; or
- assessment of the effectiveness of FUA operations in general - for an analysis made at regional or ECAC level.

7.3.6.3 **Formula:**

\[\text{FEO} = \text{FER} + \text{FEL} \text{ [NM]} \]

7.3.7 **Actual Flight Economy (AFE)**

7.3.7.1 **Definition:**

AFE represents flight economy (in NM) realised by flights that have actually used an available CDR or have actually flown through an available reserved/restricted airspace.

7.3.7.2 **Usage:**

AFE computed individually:

- assessment of a particular CDR in order to determine the potential for re-categorization; or
- the effectiveness of the negotiation process (at ASM Level 1 and ASM Level 2 for their respective roles).
- assessment of network impact for a particular reserved/restricted airspace in the case of FRA environment

AFE computed as a total:

- assessment of the effectiveness of a certain AMC - for an analysis made at the national level; or
- assessment of the effectiveness of FUA operations in general - for an analysis made at regional or ECAC level.

7.3.7.3 **Formula:**

\[\text{AFE} = \text{AU} \times \text{PFE} \text{ [NM]} \]
This page intentionally left blank
BIBLIOGRAPHY

EUROCONTROL Manual for Airspace Planning
(EUROCONTROL Document ASM.ET1.ST03.4000.EAPM.02.02 - 22 October 2003)

EUROCONTROL “The 2015 Airspace Concept and Strategy for the ECAC Area and Key Enablers”,
(EUROCONTROL Document ASM.ET1.ST03.4000-EAS-02-00 - 28 February 2008)

EUROCONTROL “Strategic Guidance in Support of the Execution of the European ATM Master Plan”

Implementation Network Manager
Commission Regulation (EU) 677/2011 of 7 July 2011

Implementation and Application of the Flexible Use of Airspace

EUROCONTROL Specification for the Application of the Flexible Use of Airspace (FUA)
(EUROCONTROL Document EUROCONTROL - SPEC -0112 - Edition 1.1 - 10 January 2009)

ICAO Documentation

Annex 2 Rules of the Air
Annex 11 Air Traffic Services
Annex 15 Aeronautical Information Services
Doc 4444 Procedures for Air Navigation Services – Air Traffic Management
Doc 7754 EUR Air Navigation Plan
Doc 8126 Aeronautical Information Services Manual
Doc 9426 Air Traffic Services Planning Manual
Doc 9554 Manual Concerning Safety Measures Relating to Military Activities Potentially Hazardous to Civil Aircraft Operations
LIST OF ANNEXES

<table>
<thead>
<tr>
<th>Annex 1</th>
<th>General Overview and Process of the FUA Concept - Handbook Cross-Reference Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annex 2</td>
<td>ATS Route Network Planning and Development Process</td>
</tr>
<tr>
<td>Annex 3</td>
<td>Common ATS/ASM/ATFCM Timetable</td>
</tr>
<tr>
<td>Annex 4</td>
<td>Airspace Charter</td>
</tr>
<tr>
<td>Annex 5</td>
<td>Description of the AUP Message</td>
</tr>
<tr>
<td>Annex 6</td>
<td>Description of the UUP Message</td>
</tr>
<tr>
<td>Annex 7</td>
<td>Illustrative examples of Weekend Routes publications</td>
</tr>
<tr>
<td>Annex 8</td>
<td>Model State Level Framework Agreement on the Cross-Border / FIR/UIR Boundary Operations</td>
</tr>
<tr>
<td>Annex 9</td>
<td>Template Letter of Agreement on Coordination Procedures between Airspace Management Cells (AMCs) in regard to Allocation and Shared Use of Common Cross-Border Areas (CBAs)</td>
</tr>
<tr>
<td>Annex 10</td>
<td>Template Letter of Agreement on Coordination Procedures in regard to Cross-Border Operations in Shared AMC-Manageable Areas</td>
</tr>
<tr>
<td>Annex 11</td>
<td>Template Letter of Agreement between Airspace Management Cells (AMCs) and Network Manager (NM) on FUA Level 2 Coordination Procedures</td>
</tr>
<tr>
<td>Annex 12</td>
<td>ASM System Support – Baseline Operational Requirements</td>
</tr>
</tbody>
</table>
Annex 2

ATS ROUTE NETWORK PLANNING/DEVELOPMENT PROCESS

ANALYSIS

Assessment of Air Traffic demands (including changes/evolution)

Identification/Validation of traffic flows to be accommodated in ARN

Consolidated Planning Principles & Criteria

Critical review of
1. ARN
2. Traffic Demand
3. Current Route Network

PLANNING, COORDINATION and VALIDATION

Identification & Analysis of shortcomings in ARN and/or current routes Network

National and/or Sub-regional RND Studies

Development of proposals to complement and/or upgrade ARN

to be validated by

Detailed studies carried out by the «Specialised Groups» to validate or amend above proposals (Simulations where required)

counter proposals

revised proposals

validation

MONITORING, coordination & integration of the Specialised Group’s outcome

Consolidation of the proposed improved ARN

APPROVAL

ICAO Procedure for the amendment of approved Regional Plans

Finalisation of EUR-ANP Amendment proposal

ICAO procedure

IMPLEMENTATION

Implementation by States Coordinated by EUROCONTROL

Definition of Implementation Programmes

Schedule and Phases

Participants:

NET OPS (RNDSG):
EUROCONTROL STATES AIRSPACE USERS ICAO

STATES: NATIONAL ADMINISTRATIONS (enlarged)

AIRSPACE USERS

ICAO

EUROCONTROL (central agent)
This page intentionally left blank
Annex 3

COMMON ATS/ASM/ATFCM TIMETABLE

AT/S/ASM/ATFM STRATEGIC TIMETABLE

<table>
<thead>
<tr>
<th>Winter - Spring</th>
<th>D-1 (Day before Operation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>International Route Network Development</td>
<td>National Approved Agencies</td>
</tr>
<tr>
<td>National Airspace Review</td>
<td>Civil/Military airspace request</td>
</tr>
<tr>
<td>New routing/airspace scenarios</td>
<td>AMC</td>
</tr>
<tr>
<td>New airspace structures</td>
<td>FMP/ACC</td>
</tr>
<tr>
<td>Traffic flow adjustment requirement</td>
<td>CADF</td>
</tr>
<tr>
<td></td>
<td>NM / FMD</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D-2 (Two Days before Operation)</td>
</tr>
</tbody>
</table>

STATEGIC ATFM

PRE-TACTICAL ATFM
This page intentionally left blank
STATE REGULATORY AUTHORITY

AIRSPACE CHARTER

FOR THE FORMULATION OF

THE NATIONAL AIRSPACE POLICY

Document Identification:
Effective:
This page intentionally left blank
DOCUMENT APPROVAL

The following table identifies the management authorities who have approved the current issue of this Charter.

<table>
<thead>
<tr>
<th>AUTHORITY</th>
<th>CIVIL REPRESENTATIVE</th>
<th>MILITARY REPRESENTATIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAME AND SIGNATURE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DATE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DOCUMENT CHANGE RECORD

The following table records the complete history of the successive editions of and amendments to the present Charted.

<table>
<thead>
<tr>
<th>EDITION AMENDEMENT</th>
<th>DATE</th>
<th>REASON FOR CHANGE</th>
<th>PAGES AFFECTED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
This page intentionally left blank
CHECKLIST

<table>
<thead>
<tr>
<th>Page</th>
<th>Date</th>
<th>Page</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td></td>
<td>Appendix A</td>
<td></td>
</tr>
<tr>
<td>iii</td>
<td></td>
<td>Appendix B</td>
<td></td>
</tr>
<tr>
<td>v</td>
<td></td>
<td>Appendix C</td>
<td></td>
</tr>
<tr>
<td>vi</td>
<td></td>
<td>Appendix D</td>
<td></td>
</tr>
<tr>
<td>ix</td>
<td></td>
<td>Appendix E</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOCUMENT APPROVAL</td>
<td>iii</td>
</tr>
<tr>
<td>DOCUMENT CHANGE RECORD</td>
<td>v</td>
</tr>
<tr>
<td>CHECKLIST</td>
<td>vii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>ix</td>
</tr>
<tr>
<td>ABBREVIATIONS</td>
<td>xi</td>
</tr>
<tr>
<td>1. PURPOSE</td>
<td>1</td>
</tr>
<tr>
<td>2. ROLE OF THE NATIONAL HIGH LEVEL POLICY BODY</td>
<td>1</td>
</tr>
<tr>
<td>3. STRATEGIC OBJECTIVES</td>
<td>1</td>
</tr>
<tr>
<td>4. RESPONSIBILITIES</td>
<td>2</td>
</tr>
<tr>
<td>5. PRINCIPLES</td>
<td>3</td>
</tr>
<tr>
<td>5.1 General</td>
<td>3</td>
</tr>
<tr>
<td>5.2 Safety</td>
<td>3</td>
</tr>
<tr>
<td>5.3 Consultation</td>
<td>3</td>
</tr>
<tr>
<td>5.4 Co-operation</td>
<td>3</td>
</tr>
<tr>
<td>5.5 Notification</td>
<td>3</td>
</tr>
<tr>
<td>5.6 Environment</td>
<td>3</td>
</tr>
<tr>
<td>6. WORKING ORGANISATION</td>
<td>4</td>
</tr>
<tr>
<td>7. AIRSPACE POLICY FORMULATION AND REVIEW PROCESS</td>
<td>4</td>
</tr>
<tr>
<td>8. AIRSPACE CHANGE PROCESS</td>
<td>5</td>
</tr>
<tr>
<td>9. DYNAMIC AIRSPACE MANAGEMENT</td>
<td>6</td>
</tr>
<tr>
<td>10. CROSS-BORDER OPERATIONS</td>
<td>6</td>
</tr>
<tr>
<td>10.1 Cross-Border Area</td>
<td>6</td>
</tr>
<tr>
<td>10.2 Cross-Border CDR</td>
<td>7</td>
</tr>
<tr>
<td>10.3 Lead AMC</td>
<td>7</td>
</tr>
<tr>
<td>11. AIRSPACE DELINEATION</td>
<td>7</td>
</tr>
<tr>
<td>12. PUBLICATION</td>
<td>7</td>
</tr>
</tbody>
</table>
ABBREVIATIONS

List and define all abbreviations used in the Charter

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>Approved Agency</td>
</tr>
<tr>
<td>AIRAC</td>
<td>Aeronautical Information, Regulation and Control</td>
</tr>
<tr>
<td>AIS</td>
<td>Aeronautical Information Service</td>
</tr>
<tr>
<td>AMC</td>
<td>Airspace Management Cell</td>
</tr>
<tr>
<td>AO</td>
<td>Aircraft Operator</td>
</tr>
<tr>
<td>ASM</td>
<td>Airspace Management</td>
</tr>
<tr>
<td>ATC</td>
<td>Air Traffic Control</td>
</tr>
<tr>
<td>ATS</td>
<td>Air Traffic Services</td>
</tr>
<tr>
<td>CADF</td>
<td>ECAC Centralised Airspace Data Function</td>
</tr>
<tr>
<td>CBA</td>
<td>Cross-Border Area</td>
</tr>
<tr>
<td>CDR</td>
<td>Conditional Route</td>
</tr>
<tr>
<td>DAM</td>
<td>Dynamic Airspace Management</td>
</tr>
<tr>
<td>DOC</td>
<td>Document</td>
</tr>
<tr>
<td>ECAC</td>
<td>European Civil Aviation Conference</td>
</tr>
<tr>
<td>ERNIP</td>
<td>European Route Network Improvement Plan</td>
</tr>
<tr>
<td>FUA</td>
<td>Flexible Use of Airspace</td>
</tr>
<tr>
<td>HLPB</td>
<td>High Level Airspace Policy Body</td>
</tr>
<tr>
<td>IA</td>
<td>Impact Assessment</td>
</tr>
<tr>
<td>ICAO</td>
<td>International Civil Aviation Organisation</td>
</tr>
<tr>
<td>LoA</td>
<td>Letter of Agreement</td>
</tr>
<tr>
<td>NASMAC</td>
<td>National Airspace Management Advisory Committee</td>
</tr>
<tr>
<td>NATO</td>
<td>North Atlantic Treaty Organisation</td>
</tr>
<tr>
<td>NM</td>
<td>Network Manager</td>
</tr>
<tr>
<td>PCA</td>
<td>Prior Coordination Airspace</td>
</tr>
<tr>
<td>RCA</td>
<td>Reduced Coordination Airspace</td>
</tr>
<tr>
<td>TRA</td>
<td>Temporary Reserved Area</td>
</tr>
<tr>
<td>TSA</td>
<td>Temporary Segregated Area</td>
</tr>
</tbody>
</table>
AIRSPACE CHARTER

1. PURPOSE

1.1 This Charter is designed to assist airspace users and ATS providers. It defines the authorities, responsibilities and principles by which the National/FAB High-Level Airspace Policy Body (HLAPB), as the airspace approval and regulatory authority, conducts the planning of airspace.

1.2 The Charter incorporates as Annexes the processes used to provide a high quality service to airspace users and ATS providers through the safe, accurate and timely planning, approval and promulgation of national airspace arrangements.

2. LEGAL FOUNDATION OF THE HLAPB

2.1 In order to perform the Member States’ tasks pursuant to Article 4 (1) (2) of Regulation 2150/2005 and [national regulations], the [National Authority] establishes the HLAPB, responsible for strategic airspace management.

2.2 In respect of the responsibility defined in [FAB Agreement], Members States agreed to establish [FAB] HLAPB.

3. ROLE OF THE NATIONAL HIGH LEVEL POLICY BODY

3.1 The role of the national HLAPB is to ensure a safe and efficient use of the national/FAB airspace structure and ATS route network and to provide a continuum and transparency of operational handling at national borders based on harmonised agreements derived from collaborative airspace planning with neighbouring States.

3.2 This is to be achieved through the development, approval and enforcement of common national policies for an effective airspace allocation and review process, taking into account the needs of all stakeholders, including national security and defence needs, environmental issues as well as any particular neighbouring States requirements.
4. STRATEGIC OBJECTIVES

4.1 The Strategic Objectives for the National High-Level Airspace Policy Body are to:

a) maintain and actively seek to improve the safe and effective management of the airspace and its supporting infrastructure;
b) exercise fair and effective regulation of the airspace organisation and management;
c) build confidence and respect between airspace regulators and all other stakeholders through consultation and co-operation;
d) maintain and improve standards of service through effective planning and monitoring of the high-level body’s key processes and activities;
e) accommodate shared use of national airspace by all user groups;
f) harmonise airspace management procedures with neighbouring States as appropriate;
g) to define a monitoring compliance matrix at each level, taking into consideration performance objectives as a possible way of complying with FUA regulation requirements;
h) to participate in cooperation with the relevant authorities for the definition of the performance management framework relevant to FUA.

5. RESPONSIBILITIES

4.1 The permanent national HLAPB is required to perform the following functions:

a) ensure that a commonly agreed airspace policy be formulated (e.g. a national/FAB airspace charter);
b) ensure agreed priority rules and negotiation procedures for airspace allocation at ASM Level 2 and ASM Level 3 are clearly defined and implemented;
c) ensure the ongoing (at least yearly) reassessment of national airspace with regard to effective application of FUA Concept;
d) ensure the progressive establishment of new flexible airspace structures, where appropriate;
e) establish framework agreements between civil and military authorities to facilitate the application of the FUA Concept;
f) ensure the introduction of procedures for the allocation of these airspace structures on a day by day basis;
g) ensure that appropriate national legislation is in place and amended as necessary;
h) ensure that coordination processes between all levels of ASM are established;
i) ensure that adequate real time civil/military coordination facilities and procedures shall be established;
j) ensure that civil and military terms and definitions applicable to the principles governing the FUA Concept are harmonised;
k) ensure that at any one time the total volume of airspace restrictions or reservations are kept to the minimum necessary while ensuring safety and satisfying national operational requirements;

l) ensure that a commonly agreed airspace policy for certain portions of airspace of two or more States involved, is formulated;

m) ensure the regular (at least yearly) reassessment of the joint airspace of two or more States where appropriate;

n) formulate the national policy for airspace management the "Airspace Charter" (template as presented at Annex 4 should be used);

o) reassess the national airspace structure and ATS route network periodically with the aim of planning, as far as possible, for flexible airspace structures and procedures in the upper and in the lower airspace (including Terminal Areas);

p) validate activities requiring airspace segregation and assess the level of risk for other airspace users;

q) conduct the safety assessment when planning for the establishment of CDRs, TRAs, TSAs, CBAs, AMC-manageable D and R areas, if required;

r) change or modify, if required and if practicable, D and R areas into temporary allocated airspace;

s) take into account the FUA Concept when planning for airspace classifications;

t) coordinate major events such as large scale military exercises planned well in advance of the day of operation, which require additional segregated airspace, and notify these activities by AIS publication;

u) establish as appropriate a list of days covering extended holiday periods when military operations are likely to be reduced, allowing the temporary modification of the conditions of availability of some CDRs and notify this status change by AIS publication (AIP Supplement);

v) periodically review the procedures and efficiency of ASM Level 2 operations, the submission of airspace requests by the national Approved Agencies (AAs), and the negotiating procedures and priority rules for airspace allocation;

w) periodically review the procedures and efficiency of ASM Level 3 operations, the prompt exchange and dynamic update of all necessary flight plan and radar data, and the use of adequate civil/military coordination facilities;

x) provide a continuum and transparency of operational handling at national borders through collaborative airspace planning and harmonised airspace management procedures with neighbouring States.

6. PRINCIPLES

6.1 General

6.1.1 Principles sustaining the above Strategic Objectives and Functions of the HLAPB are mainly related to safety, consultation, cooperation, notification and environment issues.

6.2 Safety

6.2.1 Safety is the paramount concern for the HLAPB in carrying out its responsibilities. Safety performance levels shall be maintained or enhanced, and the planning of airspace arrangements shall take account of obligations imposed by higher authorities and safety regulation requirements.
6.2.2 The National High-Level Airspace Policy Body will conform to international best practices and will ensure that the Airspace Change Processes, procedures and instructions are compatible with appropriate Military and Civil Aviation safety procedures.

6.2.3 When considering and refining a proposal for an airspace change, the National High-Level Airspace Policy Body will review, if required, the safety assessment of each case as supplied by the customer, to ensure that national and international plans evolve in an overall risk-reducing manner.

6.3 Consultation

6.3.1 Consultation with airspace users, service providers and other relevant bodies will be conducted with the aim of obtaining consensus, wherever possible, before making changes in the planning or design of airspace arrangements.

6.3.2 The HLAPB is charged with reconciling civil and military operational needs, without affording preferential treatment to either, and ensuring that airspace planning takes into account all user interests.

6.3.3 To ensure an effective interface at all levels, the HLAPB conducts consultation principally through the National Airspace Management Advisory Committee (NASMAC).

6.4 Cooperation

6.4.1 Close cooperation will be maintained with national and international partners to ensure that national airspace planning and policies are consistent with national and international commitments and programmes.

6.4.2 The HLAPB takes into consideration the findings and relevant corrective measures of NSA compliance oversight bodies as regards the application of Regulation 2150/2005.

6.4.3 The HLAPB establish and maintains close coordination with national representatives in the context of the work of the Network Manager and [FAB] working arrangements as regards airspace design and management and, if necessary, establishes and directs the work of sub-structures to accomplish these tasks.

6.5 Notification

6.5.1 The HLAPB is required to ensure that the promulgation of airspace policy, the implementation of new airspace structures and procedures is notified within an adequate timescale allowing sufficient time for all airspace users and ATS providers to comply with the new requirements.

6.6 Environment

6.6.1 The environmental impact of airspace design and planning is to be taken into account at the earliest possible stage when revising airspace procedures and arrangements.

6.6.2 The HLAPB is also required to ensure, where appropriate, that any changes, which may have an adverse impact on the noise disturbance in the vicinity of an airport, are the subject of proper consultation with all concerned.
6.7 Performance Approach

6.7.1 Within its competencies, the HLAPB supports the implementation of the SES performance scheme. The HLAPB decision should contribute to meeting the relevant national and [FAB] performance targets and complying with EU-wide performance targets.

6.7.2 The HLAPB consolidates civil-military performance needs and communicates them to the National Supervisory Authority and ANSP.

6.7.3 Performance monitoring and the assessment and review of FUA operational performance are carried out in close cooperation with the National Supervisory Authority.

6.7.4 Within its area of responsibilities, the HLAPB takes into account the NSA findings relevant to the performance scheme.

6.8 ASM Functions Continuation

6.8.1 HLAPB must secure a continuation of ASM functions application for benefits of all stakeholders.

6.8.2 When an urgent action is required, in cases of national security and defense need as well as necessity for protection of safety operation of civil aviation, HLAPB can apply a fast-track decision making process.

6.8.3 If HLAPB is not in position to apply required processes, the head of CAA is authorized to make an appropriate temporary decision relevant to safety of operation of civil aviation.

7. WORKING ORGANISATION

7.1 The National Airspace Management Advisory Committee (NASMAC) established by the HLAPB will be consulted for advice and views on any major matter concerned with airspace management (see Appendix C). [Depending on the size of the ATS organisation and the mandate of the HLAPB, the tasks dedicated to the Advisory Committee can be carried out inside the HLAPB, as a supplementary function.]

7.2 The main task of Advisory Committee is to assist HLAPB in the development of airspace policies, configurations and procedures in order that due attention is given to the diverse requirements of all airspace users and ATS providers, civil and military.

7.3 The Committee may be chaired by the Chairman of the HLAPB, with membership covering the whole spectrum of the State aviation community and remaining under constant review.

7.4 Most of the NASMAC business will be conducted by correspondence, but the Committee will meet in Plenary Session on request. A proposal, which may originate within the HLAPB or be initiated by a member organisation, will be circulated for NASMAC member’s comments. If the proposal does not originate within the HLAPB itself, then the HLAPB’s views need also to be circulated.

7.5 If the matter is straightforward, a consensus will easily emerge from which the HLAPB will then frame associated changes to legislation and/or alter airspace boundaries or associated procedures.
7.6 If the matter is more complex, then a sub-committee or working group may be set up by the HLAPB in which all interested members may play a part in formulating a report. A Plenary Session of the NASMAC will then be required to discuss the report and offer advice to the HLAPB.

7.7 The NASMAC should be seen as a discussion board which operates on the principle that those who have a voice in the formulation of policies are more likely to abide by those policies. Such a principle therefore relies heavily on mutual trust and interest.

8. AIRSPACE POLICY FORMULATION AND REVIEW PROCESS

8.1 This procedure defines the process which ensures that airspace policies are formulated and reviewed in accordance with the principles laid down in this Charter.

8.2 In the context of the Airspace Policy Formulation and Review Process, "Policy" refers to: “a standing decision rule which gives guidance on acceptable and unacceptable types of action.”

8.3 The Airspace Policy Formulation and Review Process falls into six stages:
 1. identification of need;
 2. analysis of the potential impact;
 3. decision to proceed;
 4. consultation;
 5. approval; and
 6. publication.

8.4 The flowchart presented at Appendix D illustrates the activities, considerations and requirements of the Airspace Policy Formulation and Review Process.

8.5 Proper coordination and agreement with the appropriate civil and military aviation organisations is a critical element of the process and should be carried out before any external consultation takes place.

8.6 An Impact Assessment (IA) describing the overall impact of a Regulatory Measure or Policy Change and including a safety case, an environmental assessment, a legal assessment and a cost benefit analysis will be initiated and/or conducted, if required, by the HLAPB when formulating policy or initiating legislative change.

8.7 Policies are to be subject to periodic reviews. The criteria for review will be set out in the policy statement. The length of the review period shall take into account the scale of impact of the new or revised policy.

9. AIRSPACE CHANGE PROCESS

9.1 This procedure defines the process which ensures that proposed changes to airspace are initiated, considered, refined, approved and implemented in a safe and controlled manner, and in accordance with the policies and procedures laid down by the HLAPB.

9.2 In the context of the Airspace Change Process, "Clients" refers to: “those allowed requesting changes to airspace” (e.g. airspace users, ATS providers etc.).

9.3 The Client, on identifying a possible requirement to change airspace, will inform the National HLAPB, which will then be available to offer advice on aspects concerning the guidelines,
design, safety management and consultation exercise. Ownership of the proposal will always remain with the Client.

9.4 The Client will carry out, if required, initial informal consultation and in the event of a deadlock situation or undue delay may refer the problem to the HLAPB for advice. The HLAPB may then make a judgement, after further consultation with the objector, as necessary, to decide how the objection should be handled.

9.5 On completion of the informal consultation, the Client will submit a formal proposal with full details of the change.

9.6 The HLAPB will be responsible, where necessary, for conducting the case study, formal consultation, proposal refinement, approval and establishment phases of the process.

9.7 The flowchart presented at Appendix E illustrates the phases and activities of the Common Airspace Change Process.

9.8 On completion of the formal consultation and eventual refinement, the HLAPB will formally accept the project and agree a completion date with the Client. The Client will be responsible for developing and subsequently publishing the ATC operational procedures, if so required.

9.9 For some major changes (e.g. involving extensive new procedures, cross-border airspace etc.), ICAO requires two AIRAC cycles for promulgation. The formal process may take seven months (which must be reflected in the target completion date). Some changes may be concluded in less than the stated period, but where such changes are subject to publication by AIRAC cycle, unless a full AIRAC cycle can be achieved, no reduction can be initiated.

9.10 All significant airspace changes will be subject to review by the HLAPB to ensure that they efficiently serve the purposes for which they were designed. The period between introduction and review will vary according to the complexity and purpose of the airspace change. The time of the review will be agreed by the HLAPB and the Client prior to introduction of the changes.

10. FAST TRACK PROCESS

10.1 HLAPB must secure a continuation of ASM functions application for benefits off all stakeholders.

10.2 When an urgent action is required, in cases of national security and defense need as well as necessity for protection of safety operation of civil aviation, HLAPB can apply a fast-track decision making process.

10.3 If HLAPB is not in position to apply required processes, the [national Authority] is authorized to make an appropriate temporary decision relevant to safety of operation of civil aviation.

11. DYNAMIC AIRSPACE MANAGEMENT

11.1 The aim of Dynamic Airspace Management (DAM) is to establish processes exploiting the airspace in a dynamic manner as close as practical to the time of operations to better accommodate users’ requirements in accordance with ever evolving network operations
11.2 The DAM process enables all airspace users to follow preferred and flexible flight profiles and provides two major benefits: equitable treatment in allocation of airspace and trajectories required at short notice; increase in aircraft operators’ awareness of possible routeing options.

11.3 The HLAPB is to ensure that the DAM process refers to the use of additional procedures for the delineation and allocation of airspace, and the associated dissemination of information with the aim of enhancing the current FUA process in order to respond to specific airspace requirements and/or route optimization.

11.4 The HLAPB is to ensure that DAM addresses the planning, allocation and use of dynamic airspace structures in order to exploit optimum airspace capacity as part of defining airspace configurations. This may be achieved through either existing airspace structures or those delineated ad hoc.

11.5 The HLAPB is to ensure that 'ad hoc structures' can be established, whether routes or areas, on an ad hoc basis to meet operational needs at shorter notice than the usual ASM Level 1 process and supports these structures with an adequate information awareness system, if required. The establishment of such ad hoc structures at ASM Level 2 or ASM Level 3 should follow the general design and safety management criteria.

11.6 To implement the DAM process, the HLAPB is responsible for establishing airspace structures and defining their conditions of use through a series of options based on sub-division of temporary airspace reservations or restrictions and an increased number of related CDR routes. The HLAPB also defines and establishes processes and procedures allowing for the delineation of additional ad hoc airspace structures at ASM Levels 2 and 3 as appropriate.

11.7 The State has to define the criteria and process regarding to the Dynamic Airspace Management and/or to make reference to documents such as Letters of Agreement (LoAs) in which the coordination procedures between the airspace users and ATS providers concerned are published.

12. CROSS-BORDER OPERATIONS

The aim of Cross-Border/FIR/UIR Boundary Operations (CBO) is to establish a process which would encompass activities conducted by [State] or other States, within an area established across international borders or entirely within [State/FAB] FIR.

The CBO Process would rationalise the requirements for national airspace reservation and/or airspace restriction by the allocation and shared use of areas established on both sides of a border (Cross-Border Areas, CBAs), as well as through a shared use of existing, relocated or newly developed areas, entirely established within [State] airspace but adjacent to a neighbouring State or States.

To apply Cross-Border/FIR Boundary Operations, formal agreements are necessary to set up the required cooperation in order to mitigate regulatory and procedural differences. These agreements should cover all relevant legal, operational and technical issues (e.g. sovereignty, defence, operations, the environment and search and rescue) and specify a single common set of criteria for separation between civil and military flights. As a baseline [State] intends to use EUROCONTROL templates28 of the following agreements:

- STATE LEVEL FRAMEWORK AGREEMENT ON THE CROSS BORDER / FIR BOUNDARY OPERATIONS

28 Ref ERNIP Part 3 ASM Handbook
LETTER OF AGREEMENT on Coordination Procedures in regard to Allocation and Shared Use of Common Cross Border Areas (CBAs)

LETTER OF AGREEMENT on Coordination Procedures in regard to Cross-Border Operations in Shared AMC-Manageable Areas

12.1 Cross-Border Area

12.1.1 In order to optimise the airspace structure in the area around the boundary, Cross-Border Areas (CBAs) are established on both sides of the border allowing OAT operations without any boundary constraints.

12.1.2 The HLAPB is responsible for ensuring that a framework agreement is established between the States concerned and will address all relevant CBA issues.

12.1.3 The HLAPB is responsible for setting priority rules in the agreement between the respective national administrations to resolve the problem of the allocation of this airspace between potential users, and for tasking the competent AMCs with such allocation.

12.1.4 The HLAPB is responsible for coordinating the definition of commonly agreed use criteria and airspace classifications for the establishment of the CBA, including Flight Plan Buffer Zone (FBZ) if required.

12.1.5 The HLAPB ensures that when there is a possibility of rationalising the requirements for national TRAs/TSAs and D and R areas on both sides of a border, the States concerned endeavour to optimise the airspace and route structures in the area around the border by establishing a "Cross-Border Area" (CBA). This can be achieved by establishing such CBAs in the form of either TRAs/TSAs, or AMC-manageable D and R areas.

12.1.6 The HLAPB is responsible for ensuring that a common AMC process, including the planning of reservations, airspace request and allocation and activation/deactivation procedures, is established between the AMCs concerned in line with agreed priority rules and an associated timetable.

12.1.7 The HLAPB is responsible for ensuring that Common procedures for Cross-Border/FIR/UIR Boundary Operations to share CBAs between two or more adjacent States or at [FAB] level are developed, offering States willing to merge their national collaborative airspace planning process to do so in order to apply common airspace management rules.

12.1.8 The State has to define the criteria and process regarding to CBAs activities, and/or to make reference to the document(s) as the LoAs wherein the coordination procedures between the airspace users and ATS providers concerned are published.

12.2 Cross-Border CDRs

12.2.1 In order to optimise traffic flow and to maintain flight consistency in the area around the boundary, Cross-Border CDRs are established across the border allowing GAT operations without any boundary constraints.

12.2.2 The HLAPB is to ensure that the coordination process between the neighbouring States is set up to allow harmonisation to the greatest possible extent of the categorisation, flight levels and intended availability of CDRs.
12.2.3 In the case of cross-border arrangements, the AMCs agree to harmonise route availability by coordinating area status. The individual AMCs publish route status in their national AUP.

12.2.4 The HLAPB is to ensure that a common AMC process is established to allow the AMCs concerned to delegate their responsibility for the coordination of the harmonised availability of an individual CDR on a route by route basis to a Lead AMC.

12.2.5 The State has to define the criteria and process regarding to Cross-Border CDRs activities.

12.3 Lead AMC

12.3.1 In order to have a single point of contact for the NM/CADF for each single CDR extending through the area of responsibility of [list the States], the AMCs of [list the States] have agreed to delegate their responsibility for the coordination of the harmonised availability of an individual CDR on a route by route basis and for the coordination of CBA allocation to AMC [insert the State] acting as Lead AMC.

12.3.2 The State has to define the criteria and process regarding to Lead AMC activities, and/or to make reference to the document(s) as the LoAs in which the coordination procedures between the AMCs concerned are published.

13. AIRSPACE DELINEATION

13.1 In order to ensure more transparency and predictability of airspace management measures and to reconcile opposite requirements in airspace utilisation between commercial aviation and military aviation, the HLAPB is responsible for establishing objective criteria for the design of airspace.

13.2 The HLAPB is to ensure that airspace planning and design principles in accordance with European Route Network Improvement Plan Part I “European Airspace Design Methodology – Guidelines” are executed within Riga FIR under the authority given pursuant to existing national and international regulations and agreements in force.

13.3 The HLAPB is responsible for establishing the defined criteria allowing delineation of ad hoc structures at ASM Levels 2 and 3, taking into account all airspace users and ANS providers, as well as the various issues regarding the impact of the potential ad hoc structure on the current airspace structures, procedures and ATFCM measures in force.

13.4 The HLAPB is responsible for establishing an efficient coordination process between all airspace users and ANS providers, allowing the delineation of ad hoc structures at ASM Levels 2 and 3. During the process development, care should be taken to ensure that operations at short notice will not be hindered by other activities already allocated; furthermore, the HLAPB should be informed of any discrepancies in order to review the process, ensuring that it serves efficiently the purposes for which it was designed initially.

13.5 The HLAPB is responsible for establishing LoAs where ASM Levels 2 and 3 negotiation procedures are published. These rules should clearly define the civil/military coordination process, the circumstances (nature of activity, civil/military coordination capability, etc.) and the conditions (ad hoc airspace classification, coordination procedures, etc.) under which the ad hoc structures could be delineated. Coordination between all parties involved (civil and military airspace users, ANS providers, NM, adjacent AMCs), should be conducted in order to maintain consistency with the current airspace structures, while ensuring that operational and safety requirements are met and that ad hoc structures do not impact on ATFCM measures in force.
14. PUBLICATION

14.1 Aeronautical Information is published in accordance to ICAO standards and ERNIP Part 1 and Part 3.

14.2 Explanation of the notification process, publication means and associated timescale used to notify all airspace users and ATS providers about airspace policy and airspace change.
REFERENCE DOCUMENTS RELATING TO AIRSPACE MANAGEMENT AND DESIGN

1. ICAO DOCUMENTS

Annex 2 Rules of the Air
Annex 6 Operation of Aircraft
Annex 11 Air Traffic Services
Annex 15 Aeronautical Information Services
Annex 16 Environmental Protection
Doc 4444 Procedures for Air Navigation Services - Air Traffic Management (PANS-ATM)
Doc 7754 EUR Air Navigation Plan
Doc 8126 Aeronautical Information Services Manual
Doc 9426 Air Traffic Services Planning Manual
Doc 9554 Manual Concerning Safety Measures Relating to Military Activities Potentially Hazardous to Civil Aircraft Operations

2. EU Documents

Commission Regulation 677/2011 of 7 July 2011 as amended, laying down rules for the implementation of the air traffic management (ATM) network function and amending Regulation N. 691/2010

Commission implementing Regulation (EU) N. 390/2013 of 3 May 2013 laying down a performance scheme for air navigation services and network functions

3. EUROCONTROL DOCUMENTS

European Route Network Improvement Plan (ERNIP) Part 1 - Technical Specifications

4. NATIONAL DOCUMENTS
This page intentionally left blank
STRUCTURE OF THE NATIONAL HIGH-LEVEL AIRSPACE POLICY BODY

[Insert the structure of the National High Level Policy Body that consists of a joint civil/military body responsible for the Strategic ASM functions (see Section 3)]
This page intentionally left blank
NATIONAL AIRSPACE MANAGEMENT ADVISORY COMMITTEE

Terms of Reference

[Insert the Terms of Reference defining the Scope, Objectives, Authority and Tasks of the National Airspace Management Advisory Committee. However, depending on the size of the ATS organisation and the mandate of the National High-Level Airspace Policy Body, the tasks dedicated to the Advisory Committee can be carried out inside the National High-Level Airspace Policy Body, as a supplementary function (see para 3.2.4)]
AIRSPACE POLICY FORMULATION AND REVIEW PROCESS

[Insert the flowchart illustrating the State’s process applied for the formulation and review of the Airspace Policy (see para 3.2.5 and Figure 1)]
This page intentionally left blank
AIRSPACE CHANGE PROCESS

[Insert the flowchart illustrating the State’s Airspace Change Process]
Annex 5

DESCRIPTION OF THE AIRSPACE USE PLAN

1. The AUP

1.1 The "Airspace Use Plan" (AUP) is the official medium for the daily notification by an AMC of
the national airspace allocation for a reference day. An AMC shall release only ONE AUP per
day.

1.2 Changes to the AUP published at D-1 could be effected by the AMC through an "Updated
Airspace Use Plan" (UUP) [see Annex 6].

1.3 As AUPs are not sent individually to AOs, the information provided by AMCs on the airspace
structures use plans in the ECAC area shall be disseminated by the NM/CADF via the NOP
portal and via eAMI messages, to operators for awareness as well as for flight planning
purposes.

2. Preparation, Publication & Distribution of the AUP

2.1 The AUP shall be prepared by the AMC and distributed to the NM via CIAM or via authorised
ASM tools using B2B service.

2.2 During the pre-AUP coordination procedure, draft AUPs will be used and identified as “Draft
AUP”. Draft AUPs will be available to each AMC. At any time, there will be only ONE stored
AUP per day and per AMC in “Airspace Use Plan” or "Draft" form identified in the first line of
the header as "Draft AUP" or "Airspace Use Plan" respectively. The D-1 “Airspace Use Plan"
content will be decided by the AMC itself at D-1 1400 UTC at the very latest or if none,
automatically by the NM system, unless the AMC informed the NM of a late release of the
AUP.

2.3 The NM collects and consolidates the D-1 AUP, publishes the EAUP on the NOP portal and
produces eAMI messages for the B2B service.

2.4 The DRAFT AUPs available from D-6 to D-2 are published on the NOP Portal. Due to the fact
that they are not mandatory, no EAUP is expected.

3. Description of the AUP

3.1 The elements included in the AUP are described below and summarised in table form in the
next pages.

3.2 Header

- **First Line:** Identification of the Type of Message
 [e.g. Airspace Use Plan or Draft AUP]
- **Second Line:** Identification of the Sending Unit
 [e.g. AMC: EDDAZAMC - GERMANY -]
- **Third Line:** Definition of the Validity Period of the Message
 [e.g. 06/06/2008 06:00 - 07/06/2008 06:00]
 The validity period shall cover the 24 hour time period between 0600 UTC the next day to 0600 UTC the day after.
 This time period has to be considered for continuity purposes as a semi-open interval with the first limit included and the last one not.
Fourth Line: Date and Time of Transmission of the AUP
[e.g. 05/06/2008 13:53]
In addition to the type of message defined in the first line, the AUP is identified by the day and time of its transmission.

3.3 Lists ALPHA to FOXTROT

For each allocated airspace structure listed in the AUP in the following sequence, the different columns will contain:

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALPHA</td>
<td>List of Available CDR2s;</td>
</tr>
<tr>
<td>BRAVO</td>
<td>List of Permanent ATS Routes, and CDR1s temporary unavailable for flight planning;</td>
</tr>
<tr>
<td>CHARLIE</td>
<td>List of Active TRAs/TSA and AMC-manageable R and D areas (AMA); List of active temporary AMC-manageable areas established via NOTAM/AIP Supplement/AIC, list of active FBZ areas linked to AMAs;</td>
</tr>
<tr>
<td>DELTA</td>
<td>List of Non AMC-manageable areas (NAM); List of active temporary Non AMC-manageable areas established via NOTAM/AIP Supplement/AIC, list of active FBZ areas linked to NAMs;</td>
</tr>
<tr>
<td>ECHO</td>
<td>List of SIDs and STARs temporary unavailable for flight planning due to areas activations as appropriate;</td>
</tr>
<tr>
<td>FOXTROT</td>
<td>Additional Information</td>
</tr>
</tbody>
</table>

First Column: Number
[e.g. 1]
Each airspace structure shall be listed with a sequence number and shall contain only one “Validity Period” and one “Flight Level Block” per number element. For each list ALPHA to ECHO, the sequence number shall start with [1] for the first item of the list in alphanumeric order. Upper and lower ATS routes having the same generic name shall be placed one above the other.

In order to meet requirements of various readers of the AUP, the different lists ALPHA to ECHO can be divided by FIR/UIR, but in keeping their unique sequence number of the alphanumeric order to allow their identification in the UUP in case of cancellation or reallocation.

Second Column: Designator
[e.g. UR 80 PERDU TBO or LF-D 31 CAZAUX or UF REIMS]
Each airspace structure shall be identified as follows:

For Lists ALPHA & BRAVO, with the AIP ENR 3-2 route designator followed by the two ICAO identifiers of the first and last points of the portion of the ATS route concerned;

For Lists CHARLIE & DELTA, with the AIP ENR 5 designator followed, if needed, by the name of the airspace or portion thereof concerned; With the ID of the temporary areas published by States via NOTAM/AIP Supplement/AIC.

For List ECHO With the AIP AD 2 airport designator + the designator used for SID/STAR.

Third Column: Flight Level Block
[e.g. F110 - F240 or F250 - UNL or GND or SFC - 900M AGL]
Each airspace structure shall be described vertically as follows:
For List ALPHA, with the upper and lower limits of the ATS route or portion thereof available inclusive of the IFR flight levels given;

For List BRAVO, with the upper and lower limits of the ATS route, and CDR1 or portion thereof closed inclusive of the IFR flight levels given;

For Lists CHARLIE and DELTA with the upper and lower limits of the affected airspace expressed either in flight levels, altitudes or heights inclusive of the figures given.

For list ECHO, Due to the different altitudes/FLs used in the descriptions of SID/STAR, “Not Applicable (N/A)” should be used.

Note: due to the technology used by NM system, the EAUP published on the NOP portal will use intermediate FL as described in 6.1.3.

- **Fourth Column**: Validity Period
 [e.g. 12:05 - 06:00]
 For each allocated airspace structure listed in ALPHA to ECHO, the “Validity Period” shall not exceed the 24 hours period of the AUP. The AUP shall repeat daily all data affecting more than one day. The “Validity Period” expressed with date/time groups indicating the start and the end of the period means variously:

 For List ALPHA, the “Period of availability for flight planning”;
 For List BRAVO, the “Period of unavailability for flight planning”;
 For List CHARLIE, the “Period of Use”;
 For List DELTA, the “Period of Use”;
 For List ECHO the “Period of unavailability for flight planning”.

This time period has to be considered for continuity purposes as a semi-open interval with the first limit included and the last one not. Date will be referred to the day only and time will be expressed in hours and minutes.

- **Fifth Column**: FUA/EU Restriction
 This column will allow the AMC to indicate when an NM restriction is required according to the follow:

 For List CHARLIE and DELTA FUA Restriction is required for a permanent area; EU restriction is required for a temporary area;

 FUA/EU Restriction should be available in the CACD. Coordination with national responsible Authority is required for their definition.

- **Sixth/Seventh Columns**: Responsible Unit and/or Remarks Field
 [e.g. For continuation see AUP Germany EDFF FIR or ETNT BOMBING 3/F4]
 For each allocated airspace structure listed in ALPHA to ECHO, the “Remarks Field” may be used to input any specific comments.
For List ALPHA, when continuation of the ATS route has been coordinated with (a) neighbouring State(s) in (an) adjacent FIR/UIR(s), the following information shall be given: "For continuation see AUP + country name + FIR/UIR designator" or [the information on the consolidated CDR2 portion commonly accessible shall be given only once in the AUP of the designated Lead AMC];

For List BRAVO, when the ATS route closure information needs to be repeated in the EAUP for safety repetition, the word "NOTAM" shall be included without any reference;

For Lists CHARLIE and DELTA, the unit responsible may be indicated for the concerned airspace during the time specified by the Validity Period; then the remarks field may be divided into two parts separated by a tab to indicate additional information, such as FUA/EU restrictions ID codes, the type of activity and the number and type of aircraft concerned.

3.4 Additional Information

Finally, any additional information may be added in plain language at the end of the message (LIST FOXTROT).
FORMAT & CONTENTS FOR THE AIRSPACE USE PLAN

MESSAGE TYPE

“Airspace Use Plan” or “Draft AUP”

SENDING UNIT – REFERENCE

AMC NAME

VALIDITY PERIOD

D/ 0600 D+1/ 0600

DATE/TIME OF TRANSMISSION

D-6 to D-2 for DRAFT AUP
D-1/ 1400 (at the very latest) for AUP

ALPHA:

LIST OF AVAILABLE CATEGORY 2 CDRs

<table>
<thead>
<tr>
<th>Number</th>
<th>Designator</th>
<th>Flight Level Block</th>
<th>Validity Period</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AIP ENR 3-2 route designator and identifiers of first and last points of the portion of route concerned with ICAO identifiers</td>
<td>Upper and lower limits inclusive of the IFR flight levels given.</td>
<td>Date/time groups indicating the start and the end of the period of use</td>
<td>Any additional information in plain language.</td>
</tr>
</tbody>
</table>

BRAVO:

LIST OF UNAVAILABLE ATS ROUTES AND CATEGORY 1 CDRs

<table>
<thead>
<tr>
<th>Number</th>
<th>Designator</th>
<th>Flight Level Block</th>
<th>Validity Period</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AIP ENR 3-2 route designator and identifiers of first and last points of the portion of route concerned with ICAO identifiers.</td>
<td>Upper and lower limits inclusive of the IFR flight levels given.</td>
<td>Date/time groups indicating the start and the end of the period of unavailability</td>
<td>Any additional information in plain language.</td>
</tr>
</tbody>
</table>
CHARLIE:

<table>
<thead>
<tr>
<th>Number</th>
<th>Designator</th>
<th>Flight Level Block</th>
<th>Validity Period</th>
<th>Responsible Unit</th>
<th>FUA/EU 29</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AIP ENR 5 designer and name of the airspace or portion thereof concerned. Designator of Temporary AMC-manageable areas published via AIP SUPP/NOTA M/AIC. Designator of any FBZ area.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FUA/EU Restriction ID Codes if YES. Any additional information in plain language.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Remarks</th>
</tr>
</thead>
</table>

Sequence number starting with [1] for the first item.

For a particular area which has an associated FBZ, either the area OR the associated FBZ area could be published in an AUP/UUP. The FBZ, as it is published in the AIP, includes the concerned area. For an FBZ type area, the "FUA" value is always YES, meaning that at least one FUA restriction is active for that area, therefore any flight plan through this area is rejected by IFPS.

DELTA:

<table>
<thead>
<tr>
<th>Number</th>
<th>Designator</th>
<th>Flight Level Block</th>
<th>Validity Period</th>
<th>Responsible Unit</th>
<th>FUA/EU 29</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AIP ENR 5 designer and name of the airspace or portion thereof concerned. Designator of Temporary AMC-manageable areas published via AIP SUPP/NOTA M/AIC. Designator of any FBZ area.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FUA/EU Restriction ID Codes if YES. Any additional information in plain language.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Remarks</th>
</tr>
</thead>
</table>

Sequence number starting with [1] for the first item.

For a particular area which has an associated FBZ, either the area OR the associated FBZ area could be published in an AUP/UUP. The FBZ, as it is published in the AIP, includes the concerned area. For an FBZ type area, the "FUA" value is always YES, meaning that at least one FUA restriction is active for that area, therefore any flight plan through this area is rejected by IFPS.
List of Unavailable SID/STARs

<table>
<thead>
<tr>
<th>Sequence Number starting with [1] for the first item.</th>
<th>Designator</th>
<th>Flight Block</th>
<th>Validity Period</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIP AD 2 airport designator + the designator used for SID/STAR</td>
<td>N/A</td>
<td>Date/time groups indicating the start and the end of the period of unavailability</td>
<td>Any additional information in plain language.</td>
<td></td>
</tr>
</tbody>
</table>

Additional Information

Any additional information in plain language, if not “NIL”.
FICTITIOUS EXAMPLE OF “AUP”

AIRSPACE USE PLAN

AMC: LFFAZAMC - FRANCE
VALIDITY: 13/09/2008 06:00 - 14/09/2008 06:00
TIME OF TRANSMISSION: 12/09/2008 13:30

LFFFUIR

A) Available Category 2 CDRs:

<table>
<thead>
<tr>
<th>Nr</th>
<th>Route</th>
<th>Portion</th>
<th>FL Min</th>
<th>FL Max</th>
<th>From</th>
<th>Until</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>UL851</td>
<td>LUVAL</td>
<td>F215</td>
<td>F285</td>
<td>06:00</td>
<td>09:15</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>UL851</td>
<td>LUVAL</td>
<td>F215</td>
<td>F285</td>
<td>12:30</td>
<td>16:00</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>UZ706</td>
<td>CTL</td>
<td>F300</td>
<td>F460</td>
<td>15:30</td>
<td>22:00</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>UZ707</td>
<td>FAMEN</td>
<td>F270</td>
<td>F460</td>
<td>06:00</td>
<td>08:00</td>
<td></td>
</tr>
</tbody>
</table>

B) Unavailable ATS Routes and Category 1 CDRs:

<table>
<thead>
<tr>
<th>Nr</th>
<th>Route</th>
<th>Portion</th>
<th>FL Min</th>
<th>FL Max</th>
<th>From</th>
<th>Until</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>UN858</td>
<td>ABRIX</td>
<td>F195</td>
<td>F460</td>
<td>10:00</td>
<td>12:30</td>
<td>NOTAM A2238</td>
</tr>
</tbody>
</table>

C) TRA/TSA Manageable Areas (AMA):

<table>
<thead>
<tr>
<th>Nr</th>
<th>Area</th>
<th>FL Min</th>
<th>FL Max</th>
<th>From</th>
<th>Until</th>
<th>Resp. Unit</th>
<th>FUA/EU</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CBA1A</td>
<td>F115</td>
<td>UNL</td>
<td>07:15</td>
<td>08:15</td>
<td>LFYA</td>
<td>YES</td>
<td>LFFFUIR, CBA1AR</td>
</tr>
<tr>
<td>2</td>
<td>CBA1A</td>
<td>F115</td>
<td>UNL</td>
<td>08:30</td>
<td>09:30</td>
<td>LFYA</td>
<td>YES</td>
<td>LFFFUIR, CBA1AR</td>
</tr>
<tr>
<td>3</td>
<td>CBA1B</td>
<td>F225</td>
<td>UNL</td>
<td>07:15</td>
<td>08:15</td>
<td>LFYA</td>
<td>YES</td>
<td>CBA1AR</td>
</tr>
<tr>
<td>4</td>
<td>LFTSA10A</td>
<td>F195</td>
<td>F315</td>
<td>07:15</td>
<td>10:00</td>
<td>LFYO</td>
<td>NO</td>
<td>ARA</td>
</tr>
<tr>
<td>5</td>
<td>LFTSA10B1</td>
<td>F195</td>
<td>F315</td>
<td>07:15</td>
<td>10:00</td>
<td>LFYO</td>
<td>NO</td>
<td>ARA</td>
</tr>
<tr>
<td>6</td>
<td>LFTSA20A</td>
<td>F195</td>
<td>UNL</td>
<td>07:15</td>
<td>07:45</td>
<td>LFYA</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>LITSA9B</td>
<td>F285</td>
<td>UNL</td>
<td>06:00</td>
<td>10:00</td>
<td>LFYO</td>
<td>YES</td>
<td>LITSA9BR</td>
</tr>
</tbody>
</table>

D) Non AMC-manageable areas (NAM):

<table>
<thead>
<tr>
<th>Nr</th>
<th>Area</th>
<th>FL Min</th>
<th>FL Max</th>
<th>From</th>
<th>Until</th>
<th>Resp. Unit</th>
<th>FUA/EU</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CER BORD</td>
<td>F205</td>
<td>F450</td>
<td>08:00</td>
<td>17:30</td>
<td>LFFAZAMC</td>
<td>NO</td>
<td></td>
</tr>
</tbody>
</table>

E) Unavailable SIDs and STARs closed:

<table>
<thead>
<tr>
<th>Nr</th>
<th>Area</th>
<th>FL Min</th>
<th>FL Max</th>
<th>From</th>
<th>Until</th>
<th>Resp. Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NIL</td>
</tr>
</tbody>
</table>

F) Additional information

NIL
FICTITIOUS EXAMPLE OF A “DRAFT AUP”

DRAFT AUP

AMC: LFFAZAMC - FRANCE -
VALIDITY: 11/07/2002 06:00 - 12/07/2002 06:00
TIME OF TRANSMISSION: 10/07/2002 13:50
LFFFUIR

A) Available Category 2 CDRs:

<table>
<thead>
<tr>
<th>Nr</th>
<th>Route</th>
<th>Portion</th>
<th>FL Min</th>
<th>FL Max</th>
<th>From</th>
<th>Until</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>UG29</td>
<td>PTV</td>
<td>F215</td>
<td>F460</td>
<td>06:00</td>
<td>23:00</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>UG52</td>
<td>AGN</td>
<td>F195</td>
<td>F460</td>
<td>21:45</td>
<td>23:00</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>UL851</td>
<td>LUVAL</td>
<td>F215</td>
<td>F285</td>
<td>06:00</td>
<td>10:30</td>
<td></td>
</tr>
</tbody>
</table>

B) Unavailable ATS Routes and Category 1 CDRs: NIL

C) TRA/TSA Manageable Areas (AMA): NIL

D) Non AMC-manageable Areas (NAM): NIL

E) Unavailable SIDs and STARs: NIL

F) Additional information: NIL
DESCRIPTION OF THE UPDATED AIRSPACE USE PLAN

1. The UUP

1.1 After the AMC has completed the allocation process and published accordingly the "Airspace Use Plan" (AUP) [see Annex 5] at D-1, modifications to the airspace allocation might be necessary in order to take advantage of the cancellation of any previously reserved airspace structure or to provide information of new allocation of areas. Changes to the airspace allocation will be promulgated by the AMC through an "Updated Airspace Use Plan" (UUP).

1.2 The CDRs new availability or closure described in UUPs, will be published via the EUUP on the NOP portal and the CACD database will be updated accordingly.

1.3 UUPs shall consist of alterations to the current AUP. In particular, UUPs will contain details of:
 - the cancellation of areas allocated in the current AUP;
 - The cancellation/relaxation of FUA/EU restrictions;
 - the new allocation of areas;
 - The new/more constraining activation of FUA/EU restrictions;
 - new CDRs 2 made available as a result of areas cancellation and/or FUA/EU restrictions;
 - new CDRs unavailable due to new allocation of areas and/or new/more constraining activation of FUA/EU restrictions;
 - modifications made to CDRs already listed in the current AUP;
 - alterations to, or cancellations of, unavailable ATS routes or CDRs1, AMC-Manageable R and D areas, Non AMC-Manageable areas and FUA/EU restrictions listed in the current AUP.

1.4 The UUP represents a snapshot and contains full information on airspace allocation for the reference validity time. As consequence, a CDR2 unavailability will disappear from List ALPHA and an ATS route or CDR1 becoming available will disappear from List BRAVO. The released areas will disappear from the Lists CHARLIE to and DELTA ECHO, while the change of FUA/EU restrictions will update the related column and the information in the remark field. The SIDs and STARs becoming available due to the release of the areas, they will disappear from list ECHO.

 Note: The function "Compare" of the CIAM application will visualise the differences from the previous AUP/UUPs.

2. Preparation, Publication & Distribution of the UUP

2.1 The UUP shall be prepared by the AMC in the same common format as the AUP and distributed to the NM.

2.2 The UUPs information will be used by NM/CADF to produce eAMI messages as well as available on the NOP portal.

2.3 The UUPs shall be prepared by means of the CIAM software set up in NM terminals.

3. Description of the UUP

3.1 The UUP shall contain lists in the same sequence as for the AUP and for easy reference, the number element of each amended route/airspace in the UUP shall be the same number as the item in the corresponding AUP it is amending.
3.2 The elements included in the UUP are described below and summarised in table form in the next pages.

3.3 **Header**

- **First Line:** Identification of the Type of Message
 [e.g. Updated Airspace Use Plan]
- **Second Line:** Identification of the Sending Unit
 [e.g. AMC: EDDAZAMC - GERMANY]
- **Third Line:** Definition of the Validity Period of the UUP
 [e.g. 08/06/2008 12:00 - 09/06/2008 06:00]
 The validity period of an UUP shall not exceed the validity period of the AUP it is amending and shall end at the same time.
 As for the AUP, this validity period has to be considered for continuity purposes as a semi-open interval with the first limit included and the last one not.
- **Fourth Line:** Date and Time of Transmission of the UUP
 [e.g. 08/06/2008 08:53]
 In addition to the type of message defined in the first line, it is important to identify the day and time of transmission of the UUP to ensure that the one being used is the latest.

3.4 **Lists ALPHA to FOXTROT**

The UUP shall contain lists in the same following sequence as for the AUP:

- **ALPHA**
 Amended List of CDR2s Availability;
- **BRAVO**
 Amended List of Temporary Unavailable Permanent ATS routes and CDR1s;
- **CHARLIE**
 Amended List of Active TRAs/TSAs and AMC-manageable R and D areas (AMA's); Active temporary AMC-manageable areas established via NOTAM/AIP Supplement/AIC, Active FBZ areas linked to AMAs;
- **DELTA**
 Amended List of Active Non AMC-Manageable areas. (NAM’s); Active temporary Non AMC-manageable areas established via NOTAM/AIP Supplement/AIC, Active FBZ areas linked to NAMs;
- **ECHO**
 Amended List of Unavailable SIDs and STARs, as appropriate.
- **FOXTROT**
 Additional information.

For each amended airspace structure listed in the UUP, the different columns will contain:

- **First Column:** Number
 [e.g. 3]
 For ease of reference, the number element of each amended route/airspace in the UUP shall be the same number as the item in the corresponding AUP it is amending. For the new airspace structures made available, a sequence number following the last number element of the corresponding list in the AUP shall be used so as to avoid any confusion.
 Where two or more airspace structures in the AUP are being replaced by one in the UUP, the second and following airspace structures must also appear in the UUP, but with only the word “deleted” in the Remarks field.
 In order to meet requirements of various readers of the UUP, the different lists ALPHA to ECHO can be divided by FIR/UIR, but in keeping their unique sequence number of the alphanumeric order in the original AUP.

- **Second Column:** Designator
 [e.g. UR 80 PERDU TBO or LF-TSA 42 or UF REIMS]
 Each amended airspace structure shall be identified as follows:
For Lists **ALPHA & BRAVO**, with the AIP ENR 3-2 route designator followed by the two ICAO identifiers of the first and last points of the portion of the ATS route concerned;

For Lists **CHARLIE & DELTA**, with the AIP ENR 5 designator followed, if needed, by the name of the airspace or portion thereof concerned; With the ID of the temporary areas published by States via NOTAM/AIP Supplement/AIC;

For List **ECHO**, With the AIP AD 2 airport designator + the designator used for SID/STAR

Third Column: Flight Level Block

Example: F110 - F240 or F250 - UNL or GND or SFC - 900M AGL

Each amended airspace structure shall be described vertically as follows:

For List **ALPHA**, with the upper and lower limits of the ATS route or portion thereof available inclusive of the IFR flight levels given;

For List **BRAVO**, with the upper and lower limits of the ATS route or portion thereof closed inclusive of the IFR flight levels given;

For Lists **CHARLIE** and **DELTA** with the upper and lower limits of the affected airspace expressed either in flight levels, altitudes or heights.

For List **ECHO**, Due to the different altitudes/FLs used in the descriptions of SID/STAR, “Not Applicable (N/A)” should be used.

Note: due to the technology used by NM system, the EAUP publish on the NOP portal will use intermediate FL as described in 6.1.3

Fourth Column: Validity Period

Example: 12:05 - 06:00

For each amended airspace structure listed in **ALPHA** to **ECHO**, the “Validity Period” shall not exceed the validity period of the UUP. The “Validity Period” expressed with date/time groups indicating the start and the end of the period means variously:

For List **ALPHA**, the “Period of availability for flight planning”;

For List **BRAVO**, the “Period of unavailability for flight planning”;

For List **CHARLIE**, the “Period of Use”;

For List **DELTA**, the “Period of Use”;

For List **ECHO**, the “Period of unavailability for flight planning”;

For List **FOXTROT**, Additional Information.

This time period has to be considered for continuity purposes as a semi-opened interval with the first limit included and the last one not. Date will be referred to the day only and time will be expressed in hours and minutes.

Fifth Column: FUA/EU Restriction

This column will allow the AMC to indicate when an NM restriction is required according to the follow:
For List CHARLIE and DELTA

When a FUA Restriction is required for a permanent area;
when a EU Restriction is required for a temporary area;

FUA/EU Restriction should be available in the CACD. Coordination with national responsible Authority is required for their definition.

- **Sixth/Seventh:**

 Responsible Unit and/or Remarks Field

 [e.g. Deleted or ETNT BOMBING 3/F4]

 For each amended airspace structure listed in ALPHA to ECHO, the Remarks field may be used to input any specific comments.

 For Lists ALPHA & BRAVO, when continuation of the ATS route has been coordinated with (a) neighbouring State(s) in (an) adjacent FIR/UIR(s),

 [the following information shall be given "For continuation see AUP + country name + FIR designator"] or

 [the information on the consolidated CDR2 portion commonly accessible shall be given only once in the AUP of the designated Lead AMC];

 For Lists CHARLIE and DELTA the unit responsible may be indicated for the concerned airspace during the time specified by the Validity Period; then the remarks field may be divided into two parts separated by a tab to indicate additional information, such as FUA/EU restrictions ID codes, the type of activity and the number and type of aircraft concerned.

3.5 **Additional Information**

Finally, any additional information may be added in plain language at the end of the message (List FOXTROT).
FORMAT & CONTENTS FOR THE UPDATED AIRSPACE USE PLAN

<table>
<thead>
<tr>
<th>MESSAGE TYPE</th>
<th>“Updated Airspace Use Plan”</th>
</tr>
</thead>
<tbody>
<tr>
<td>SENDING UNIT - REFERENCE-</td>
<td>AMC NAME</td>
</tr>
<tr>
<td>VALIDITY PERIOD</td>
<td>D/ xxxx D+1/ 0600</td>
</tr>
<tr>
<td>DATE/TIME OF TRANSMISSION</td>
<td>D-1 (after AUP) to D</td>
</tr>
</tbody>
</table>

ALPHA:

LIST OF AVAILABLE CATEGORY 2 CDRs

<table>
<thead>
<tr>
<th>Number</th>
<th>Designator</th>
<th>Flight Block</th>
<th>Level Block</th>
<th>Validity Period</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>sequence number starting with [1] for the first item</td>
<td>AIP ENR 3-2 route designator and identifiers of first and last points of the portion of route concerned with ICAO identifiers</td>
<td>Upper and lower limits inclusive of the IFR flight levels given.</td>
<td>Date/time groups indicating the start and the end of the period of use</td>
<td>Any additional information in plain language.</td>
<td>If an AUP element is cancelled, these fields shall not be completed.</td>
</tr>
</tbody>
</table>

When two or more items in the AUP are being replaced by one in the UUP, the second and following ones must appear in the UUP with the word “Deleted”.

BRAVO:

LIST OF UNAVAILABLE ATS ROUTES AND CATEGORY 1 CDRs

<table>
<thead>
<tr>
<th>Number</th>
<th>Designator</th>
<th>Flight Block</th>
<th>Level Block</th>
<th>Validity Period</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>sequence number starting with [1] for the first item</td>
<td>AIP ENR 3-2 route designator and identifiers of first and last points of the portion of route concerned with ICAO identifiers</td>
<td>Upper and lower limits inclusive of the IFR flight levels given.</td>
<td>Date/time groups indicating the start and the end of the period of unavailability</td>
<td>Any additional information in plain language.</td>
<td>If an AUP element is cancelled, this Field shall contain the word “Deleted”.</td>
</tr>
</tbody>
</table>

If an AUP element is cancelled, these fields shall not be completed.
LIST OF TSAs/TRAs AND “AMC-MANAGEABLE” R AND D AREAS (AMA)

<table>
<thead>
<tr>
<th>Number</th>
<th>Designator</th>
<th>Flight Level Block</th>
<th>Validity Period</th>
<th>Responsible Unit</th>
<th>FUA/EU</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>sequence number starting with [1] for the first item</td>
<td>AIP ENR 5 designator and name of the airspace or portion thereof concerned. Designator of Temporary AMC-manageable areas published via AIP SUPP/NOTA M/AIC. Designator of any FBZ area.</td>
<td>Affected airspace described vertically between the two flight levels concerned.</td>
<td>Date/time groups indicating the start and the end of the period of use</td>
<td>Unit responsible for the airspace concerned during the time indicated by the Validity Period.</td>
<td>YES or NO for activation</td>
<td>FUA/EU Restriction ID Codes if YES. If an AUP element is cancelled, this Field shall contain the word “Deleted”</td>
</tr>
</tbody>
</table>

If an AUP element is cancelled, these fields shall not be completed.

DELTA :

<table>
<thead>
<tr>
<th>Number</th>
<th>Designator</th>
<th>Flight Level Block</th>
<th>Validity Period</th>
<th>Responsible Unit</th>
<th>FUA/EU</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>sequence number starting with [1] for the first item</td>
<td>AIP ENR 5 designator and name of the airspace or portion thereof concerned. Designator of Temporary AMC-manageable areas published via AIP SUPP/NOTA M/AIC. Designator of any FBZ area.</td>
<td>Affected airspace described vertically between the two flight levels concerned.</td>
<td>Date/time groups indicating the start and the end of the period of use</td>
<td>Unit responsible for the airspace concerned during the time indicated by the Validity Period.</td>
<td>YES or NO for activation</td>
<td>FUA/EU Restriction ID Codes if YES. Any additional information in plain language.</td>
</tr>
</tbody>
</table>
LIST OF UNAVAILABLE SIDs and STARs

<table>
<thead>
<tr>
<th>Sequence Number starting with [1] for the first item.</th>
<th>Designator</th>
<th>Flight Block</th>
<th>Validity Period</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIP AD 2 airport designator + the designator used for SIDs/STAR</td>
<td>N/A</td>
<td>Date/time groups indicating the start and the end of the period of unavailability</td>
<td>Any additional information in plain language.</td>
<td></td>
</tr>
</tbody>
</table>

ADDITIONAL INFORMATION

Any additional information in plain language, if not “NIL.”
FICTITIOUS EXAMPLES OF “UUP”

UPDATED AIRSPACE USE PLAN

AMC : LFFAZAMC - FRANCE -
VALIDITY : 13/09/2008 12:00 - 14/09/2008 06:00
TIME OF TRANSMISSION :

LFFFUIR

A) Available Category 2 CDRs:

<table>
<thead>
<tr>
<th>Nr</th>
<th>Route</th>
<th>Portion</th>
<th>FL Min</th>
<th>FL Max</th>
<th>From</th>
<th>Until</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>UL851</td>
<td>LUVAL</td>
<td>EPL</td>
<td>F215</td>
<td>F285</td>
<td>14:30</td>
<td>20:00 IN STEAD OF 1230/1600</td>
</tr>
<tr>
<td>2</td>
<td>UZ707</td>
<td>FAMEN</td>
<td>BSM</td>
<td>F275</td>
<td>F460</td>
<td>14:30</td>
<td>20:00</td>
</tr>
</tbody>
</table>

B) Unavailable ATS Routes and Category 1 CDRs:
NIL

C) TRA/TSA Manageable Areas (AMA):
NIL

D) Non AMC-manageable Areas (NAM):
NIL

E) Unavailable SIDs and STARs:
NIL

F) Additional information:
NIL
Annex 7

ILLUSTRATIVE EXAMPLE OF AN AIP COVER PAGE FOR EARLY ACCESS TO WEEKEND ROUTES PROCESS
(to be inserted by States having not yet published such information)

ENR 3.X

Early Access to Weekend Routes Process – Agreed Procedures

1. Preamble........
 (to be inserted by each State).

2. Following the consensus agreed upon at international level (see paragraph 3.3.1.1) that the early access to Weekend/Conditional Routes is granted during the summer for the minimum of 26 Busy Fridays, the following are applicable:

 Early access to Weekend/Conditional Routes is granted from the first Friday in May to the last Friday in October, from 1000 UTC on Friday until 0600 UTC on Monday. The same schedule is applicable for AMA in FRA regions where EAW arrangements are in place. When the last Friday in October is after the date of changing to Winter Time, that Friday is not a Busy Friday.

3. Aircraft Operators are invited to take advantage of this extra availability of Weekend/Conditional routes provided and are to refer to AIP Supplements, NOTAMs and the daily EAUP for details of any changes, and to flight plan accordingly.

4. The Weekend/Conditional routes involved in these annual international agreements are listed on the following page(s).
 (Each State should insert the list of routes concerned by Early Access agreement.)
ILLUSTRATIVE EXAMPLE OF AN AIP SUPPLEMENT FOR
ANNUAL NOTIFICATION OF NATIONAL DIFFERENCES

Preamble........ (to be inserted by State authority).

The international agreement regarding the use and extra-availability of Weekend/Conditional routes has been reached between States concerned.

The following Busy Fridays are made available for summer season 2015 in FIR...(to be inserted national FIR name) as follows:

<table>
<thead>
<tr>
<th>Friday</th>
<th>01-05-2015</th>
<th>Friday</th>
<th>07-08-2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday</td>
<td>08-05-2015</td>
<td>Friday</td>
<td>14-08-2015</td>
</tr>
<tr>
<td>Friday</td>
<td>15-05-2015</td>
<td>Friday</td>
<td>21-08-2015</td>
</tr>
<tr>
<td>Friday</td>
<td>22-05-2015</td>
<td>Friday</td>
<td>28-08-2015</td>
</tr>
<tr>
<td>Friday</td>
<td>29-05-2015</td>
<td>Friday</td>
<td>04-09-2015</td>
</tr>
<tr>
<td>Friday</td>
<td>05-06-2015</td>
<td>N/A</td>
<td>11-09-2015</td>
</tr>
<tr>
<td>Friday</td>
<td>12-06-2015</td>
<td>Friday</td>
<td>18-09-2015</td>
</tr>
<tr>
<td>Friday</td>
<td>19-06-2015</td>
<td>Friday</td>
<td>25-09-2015</td>
</tr>
<tr>
<td>Friday</td>
<td>26-06-2015</td>
<td>Friday</td>
<td>02-10-2015</td>
</tr>
<tr>
<td>Friday</td>
<td>03-07-2015</td>
<td>Friday</td>
<td>09-10-2015</td>
</tr>
<tr>
<td>Friday</td>
<td>10-07-2015</td>
<td>Friday</td>
<td>16-10-2015</td>
</tr>
<tr>
<td>Friday</td>
<td>17-07-2015</td>
<td>Friday</td>
<td>23-10-2015</td>
</tr>
<tr>
<td>Friday</td>
<td>24-07-2015</td>
<td>Friday</td>
<td>30-10-2015</td>
</tr>
<tr>
<td>Friday</td>
<td>31-07-2015</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
N/A – not available for Early Access

The routes concerned are listed in the Annex attached (each State should insert a list of the routes concerned by Early Access agreement together with any extension of their categorisation as CDR 1 from 1000 UTC on the agreed Busy Fridays. For FRA regions the list will contain the ASM Manageable Areas (AMA) covered by EAW arrangements.)

In case of exceptional circumstances amendment to this agreement shall be made known to Aircraft Operators and Air Traffic Services units with appropriate notice.

Where the military authorities require the use of released airspace due to urgent and unexpected military activities, a NOTAM with a minimum 48 hours prior notice will be dispatched on the Wednesday preceding the Busy Friday in question. The information on this cancellation will be repeated in the Thursday national Airspace Use Plan (AUP) and then replicated in the European AUP (EAUP) published to the NOP portal on EUROCONTROL website:

https://www.public.nm.eurocontrol.int/PUBPORTAL/gateway/spec/index.html

Aircraft Operators are invited to refer to the corresponding national publications and the daily EAUP for detailed procedures and to flight plan accordingly.
ILLUSTRATIVE EXAMPLE OF LIST OF ROUTES AFFECTED BY ANNUAL NOTIFICATION OF NATIONAL DIFFERENCES

List of ATS routes affected by Annual Notification of National Differences in Summer 2015

(Each State concerned shall insert here the list of routes affected by notification of national differences concerning the exemption(s) from Busy Fridays in the forthcoming summer to which the Early Access to Weekend/Conditional Routes is not applicable).

ILLUSTRATIVE EXAMPLE OF ROUTES NOT AVAILABLE AS CDR1 ON FRIDAY 08/05/15

<table>
<thead>
<tr>
<th>State</th>
<th>Route Ident.</th>
<th>Between</th>
<th>And</th>
<th>Min-FL</th>
<th>Max-FL</th>
<th>Status: Closed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgium</td>
<td>UG109</td>
<td>KOK</td>
<td>PITES</td>
<td>FL195</td>
<td>FL460</td>
<td>CDR1: FRI 1000 - MON 0600</td>
</tr>
<tr>
<td></td>
<td>UJ158</td>
<td>AGENI</td>
<td>LNO</td>
<td>FL195</td>
<td>FL460</td>
<td>CDR1: FRI 1000 - MON 0600</td>
</tr>
<tr>
<td></td>
<td>UL610</td>
<td>RINTA</td>
<td>BATTY</td>
<td>FL195</td>
<td>FL300</td>
<td>CDR1: FRI 1000 - MON 0600</td>
</tr>
<tr>
<td></td>
<td>UN852</td>
<td>LUTOM</td>
<td>TERLA</td>
<td>FL195</td>
<td>FL660</td>
<td>CDR1: FRI 1000 - MON 0600</td>
</tr>
<tr>
<td></td>
<td>UR15</td>
<td>LNO</td>
<td>KUDIN</td>
<td>FL195</td>
<td>FL660</td>
<td>CDR1: FRI 1000 - MON 0600</td>
</tr>
<tr>
<td></td>
<td>UY131</td>
<td>NIK</td>
<td>NILEM</td>
<td>FL195</td>
<td>FL460</td>
<td>CDR1: FRI 1000 - MON 0600</td>
</tr>
<tr>
<td></td>
<td>UBY157</td>
<td>DIK</td>
<td>RAMEK</td>
<td>FL195</td>
<td>FL460</td>
<td>CDR1: FRI 1000 - MON 0600</td>
</tr>
<tr>
<td></td>
<td>UZ703</td>
<td>BABIX</td>
<td>CIV</td>
<td>FL300</td>
<td>FL460</td>
<td>CDR1: FRI 1000 - MON 0600</td>
</tr>
<tr>
<td></td>
<td>UZ706</td>
<td>ARDEN</td>
<td>LENDO</td>
<td>FL245</td>
<td>FL460</td>
<td>CDR1: FRI 1000 - MON 0600</td>
</tr>
<tr>
<td></td>
<td>UZ707</td>
<td>ULPEN</td>
<td>FAMEN</td>
<td>FL195</td>
<td>FL460</td>
<td>CDR1: FRI 1000 - MON 0600</td>
</tr>
<tr>
<td></td>
<td>UZ709</td>
<td>RUPIN</td>
<td>CIV</td>
<td>FL195</td>
<td>FL460</td>
<td>CDR1: FRI 1000 - MON 0600</td>
</tr>
<tr>
<td></td>
<td>UZ714</td>
<td>SPI</td>
<td>MATUG</td>
<td>FL195</td>
<td>FL460</td>
<td>CDR1: FRI 1000 - MON 0600</td>
</tr>
</tbody>
</table>
MODEL
STATE LEVEL FRAMEWORK AGREEMENT
ON THE
CROSS BORDER / FIR BOUNDARY OPERATIONS
EUROCONTROL

INTRODUCTION

The purpose of this Model Framework Agreement on the Cross Border / FIR Boundary Operations (CBO) is to create a sound legal basis for Cross Border and FIR Boundary Operations through an agreement at State level. At the same time, it aims at facilitating and harmonising the process which would encompass military\(^{30}\) activities involving more than one State, either within an area established across international borders or entirely within airspace under the jurisdiction of one State, i.e. Cross-Border Areas (CBAs) or Temporary Segregated/Reserved Areas (TRA/TSAs), and hence contributing to the optimisation of airspace utilisation. The Model Agreement has been endorsed by the EUROCONTROL Network Operations Team (formally named Airspace and Navigation Team - ANT).

The model Framework Agreement is intended to be voluntary in nature and to be flexible rather than prescriptive. It provides options whenever possible and defines a list from which States can draw as appropriate. The suggested clauses may be used and modified as the parties consider it necessary to reflect the different institutional arrangements in the States and different approaches to shared use of CBAs, TRA/TSAs and other AMC-Manageable airspace structures.

The Model Framework Agreement addresses the legal and institutional aspects of cross border / FIR boundary operations, and allows the appropriate Approved Agencies (AAs), Airspace Management Cells (AMCs) and ATS units/Authorities concerned to negotiate and conclude Letters of Agreement containing the operational and technical aspects of cross border/FIR boundary operations. The States are recommended to follow templates of Letters of Agreement at Annexes 10 and 11 to the ERNIP Part 3 – ASM Handbook Version 5.2.

This Model Framework Agreement is a part of the ERNIP Part 3 – ASM Handbook Version 5.2, Annex 8.

\(^{30}\) This model Framework Agreement may in some specific cases refer to civil operations, e.g. flight-test, sport and other similar operations requiring airspace reservation.
This page intentionally left blank
PREAMBLE

The Government of...........(State) and the Government of...........(State) (hereinafter: “the Contracting States”)

Desiring to promote efficient use of airspace for their mutual benefit and to facilitate the safe conduct of Cross Border / FIR Boundary Operations which encompass military* activities conducted by one or more than one Contracting State, within an area established across national borders/FIR boundaries or entirely within airspace under the jurisdiction of one State in the interests of the airspace users;

Recognising without prejudice national and international requirements of the Contracting States related to security and defence policy needs;

Referring to the ‘COMMISSION REGULATION (EC) No 2150/2005’ laying down common rules for the Flexible Use of Airspace’, which, in its Article 3 (d) [Principles] stipulates that Member States shall develop cooperation for the efficient and consistent application of the concept of flexible use of airspace across national borders and/or the boundaries of flight information regions and shall in particular address cross-border activities, and that this cooperation shall cover all relevant legal, operational and technical issues;

Recognising that the conclusion of an agreement between States regarding the cross border/FIR boundary operations shall not prejudice the principle that every State has complete and exclusive sovereignty over the airspace above its territory and territorial waters, or the capacity of every State to exercise its prerogatives with regard to security and defence in its national airspace;

Recognising, that the aim of this agreement is to address legal and institutional aspects of the cross border/FIR boundary operations to allow competent authorities involved to negotiate and conclude Letters of Agreement containing the specific operational and technical aspects related to these matters described in the ERNIP Part 3 – ASM Handbook Version 5.2 in its Section 3, chapter 3.3.6.1;

Have agreed as follows:

* This model Framework Agreement may in some specific cases refer to civil operations, e.g. flight-test, sport and other similar operations requiring airspace reservation.
Article 1

Cross Border / FIR Boundary Operations

1. The Contracting States authorise each other to conduct cross border / FIR boundary operations in the airspace under their respective jurisdiction.

2. The cross border/FIR boundary operations may – as necessary – involve:
 a) The allocation and shared use of common cross border areas (CBAs) established across their national border/FIR boundary;
 b) The allocation and shared use of national areas (TRAs/TSAs, including AMC-manageable D and R areas) entirely established within the airspace under the jurisdiction of one of the Contracting States;
 c) Delegation of responsibility for the provision of air traffic services in designated airspace from one to the other Contracting State(s).

3. The Contracting States agree that the cross border / FIR boundary operations shall be executed in accordance with the terms of this Agreement.

Article 2

Sovereignty

The provisions of this Agreement shall be without prejudice to the Contracting States’ sovereignty over their airspace or their rights under the Chicago Convention and other instruments of international law.

EXPLANATORY NOTES

Based on the ERNIP Part 3 – ASM Handbook Version 5.3, chapter 3.3.6.1

Sovereign States are responsible for the regulation, supervision and provision of air navigation services in the airspace over their territory and territorial waters, whatever arrangements they have taken with respect to those services (Articles 1 and 28 of the Chicago Convention).

The arrangements agreed upon through the provisions of this Agreement shall be without prejudice to Contracting States’ sovereignty over their airspace as well as to the rights and obligations of Member States under the Chicago Convention (Articles 1, 2 and 3).
Article 3
Security and Defence

(1) The provisions of this Agreement shall be without prejudice to the Contracting States’ requirements related to security and defence policy needs.

(2) Arrangements for the effective cross-border / FIR boundary operations shall be established by the competent authorities of the Contracting States and be laid down in writing.

EXPLANATORY NOTES
The arrangements agreed upon through the provisions of this Agreement shall be without prejudice to national and international requirements of the Contracting States related to security and defence policy needs.

It is therefore recommended that regardless their participation in executing cross-border / FIR boundary operations, national air defence institutions are considered partners in developing the provisions this Agreement.
Article 4

Authorisation to Competent Authorities (AA / AMC / ATS Unit/Authority)

(1) The Contracting States agree to authorise their competent agencies (Approved Agencies (AAs), Airspace Management Cells (AMCs) and ATS units concerned), to negotiate and conclude Letters of Agreement (LoA) containing specific operational and technical aspects related to pre-tactical and tactical airspace management; and delegation of responsibility for the Air Traffic Services provision if applicable.

(2) The Letter(s) of Agreement(s) shall, *inter alia*, contain the following:

 a) Definition of applicable CBAs, TRA/TSAs and D and R areas;
 b) Definition of the responsibility for allocation of the areas concerned based on the principle of delegation of responsibility to a "Lead AMC";
 c) Air defence coordination and notification procedures
 d) Priority allocation rules, time based parameters and booking assurance instruments;
 e) Determination of the responsibility and certification for the provision of Air Traffic Services in the area(s) concerned following the principle of delegation of responsibility if deemed necessary;
 f) Certification for the provision of Air Traffic Services if deemed necessary;
 g) Contingency procedures, and
 h) Other operational issues pertinent to cross border / FIR boundary operations as appropriate.

The 'Lead AMC' concept is described in the ERNIP Part 3 – ASM Handbook Version 5.3 chapter 4.5.3

The factors affecting delegation of responsibility for provision of ATS as well as other operational issues related to CBO are described in the ERNIP Part 3 – ASM Handbook Version 5.3 chapter 3.3.6.1

The templates for the Letters of Agreement (LoA) on Coordination Procedures are available at Annexes 9 and 10 of ERNIP Part 3 – ASM Handbook Version 5.3

The specification of the certification requirements (if deemed necessary) may be based upon Article 7 of the REGULATION (EC) No 549/2004 (the framework Regulation).
Article 5

Application of Rules and Procedures

The Contracting States shall agree on the rules and procedures applicable to cross-border / FIR boundary operations performed under this Agreement. The details of these arrangements shall be set out in an Annex (x) to this Agreement.

EXPLANATORY NOTES

As a principle of sovereignty, the rules and procedures of the hosting State should apply in its territory. If, however, differently agreed, in the interest of safety and for the sake of efficiency, it is necessary that all partners involved are able to apply only one set of rules and procedures. This procedure may be appropriate when delegation of the ATS provision is involved.

Article 6

Financial Arrangements

1. Each Contracting State shall bear the costs of any activity performed by it under this Agreement, unless otherwise agreed by the Contracting States.

2. The introduction of financial arrangements requires prior written agreement between the appropriate representatives of the Contracting States.

3. To that effect, the financial arrangements agreed between the Contracting States shall be listed at Annex (x) to this agreement.

EXPLANATORY NOTES

Activities involving inter alia cost-sharing are subject to bilateral negotiations. Reasons for doing it could be manifold. If there are no financial arrangements pertinent to this Agreement, paragraph (3) should be deleted.
<table>
<thead>
<tr>
<th>Proposed Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>Article 7</td>
</tr>
<tr>
<td>Liability</td>
</tr>
</tbody>
</table>

(1) Air navigation service provider(s) providing services to cross-border / FIR boundary operations under the provisions of this agreement shall be liable for the loss or damage caused by its/their negligence or that of its/their staff or agents. No direct claim shall be brought against the air navigation services provider(s)' staff or agents when fulfilling their duties.

(2) The Contracting State in whose territory the damage occurred may bring an action against another Contracting State for any compensation or costs paid or incurred as a result of loss or damage caused by the negligence of the other Contracting State.

(3) The Contracting State in whose territory the damage occurred may bring an action against the air navigation services provider(s) to recover any compensation or costs paid or incurred as a result of loss or damage caused by the negligence of the air navigation services provider(s) or that of its/their staff or agents.

(4) Where through acts or omissions the Contracting States contribute to the damage, the air navigation service provider(s) may bring an action to recover compensation or cost paid or incurred pursuant to paragraph 1 proportionate to the Contracting States' contribution to the loss or damage.

(5) All claims referred to in this Article shall be made in the courts of the Contracting State in whose territory the loss or damage occurred and subject to the law of that Contracting State.

<table>
<thead>
<tr>
<th>EXPLANATORY NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provisions of this article are only applicable in the relationship between the Contracting States and do not constitute rights or obligations for third parties.</td>
</tr>
<tr>
<td>This article is equivalent to the Article 16 of the Model State Level FAB Agreement.</td>
</tr>
<tr>
<td>Liability arrangements should assist States in allocating responsibilities between those involved, as well as provide clarity on primary liability, recourse actions, place of jurisdiction and applicable law. The Contracting States should furthermore have a close and comparative look at their respective national law on State liability for the provision of ATS in their airspace. They will most likely have to reconcile different national approaches.</td>
</tr>
</tbody>
</table>
Article 8

Environmental Issues

1. The Contracting States agree that the environmental issues shall be respected when determining the extent of cross border / FIR boundary operations.

2. Cross border/FIR boundary operations shall be conducted without prejudice to the environmental rules and regulations of the Contracting State in whose airspace the operations take place.

3. To that effect, the restrictions arising from the law of the Providing State shall be listed at Appendix (x) to this agreement.

Article 9

Diplomatic Clearance

1. The Contracting States agree to simplify diplomatic clearance issuing in order to facilitate seamless execution of the cross border / FIR boundary operations.

2. To that effect, the diplomatic clearance issuance procedure shall be defined at Appendix (x) to this Agreement.

EXPLANATORY NOTES

In case there are no environmental restrictions pertinent to environmental law, paragraph (3) should be deleted.

The issue of diplomatic clearance may also be subject to high level political agreements between the States concerned (e.g. NATO agreements). In such case joint reference to existing agreement(s) should be listed in Appendix (x).
Article 10

Contingency Procedures

This Agreement shall be supplemented by contingency procedures at Appendix (x) as agreed between the parties concerned in accordance with Article 4.

<table>
<thead>
<tr>
<th>Proposed Text</th>
<th>EXPLANATORY NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Article 10</td>
<td>The contingency procedures could include the following items:</td>
</tr>
<tr>
<td>Contingency Procedures</td>
<td>• alerting service</td>
</tr>
<tr>
<td></td>
<td>• service to aircraft in the event of an emergency</td>
</tr>
<tr>
<td></td>
<td>• steps to be taken regarding in-flight contingencies</td>
</tr>
<tr>
<td></td>
<td>• steps to be taken to assist strayed aircraft</td>
</tr>
<tr>
<td></td>
<td>• steps to be taken concerning interception of (civil) aircraft / unlawful use of the airspace</td>
</tr>
<tr>
<td></td>
<td>• coordination between military authorities and air traffic services</td>
</tr>
<tr>
<td></td>
<td>• coordination of activities potentially hazardous to civil aircraft</td>
</tr>
<tr>
<td></td>
<td>• information exchange between the appropriate civil and military authorities / units</td>
</tr>
<tr>
<td></td>
<td>• additional items as appropriate.</td>
</tr>
</tbody>
</table>
Article 11

Investigation of Accidents or Serious Incidents

1. The Contracting States will institute an inquiry into the circumstances of accidents or serious incidents occurring in their territory. Regarding military aircraft involved in accidents or serious incidents, pertinent national regulations shall be observed.

2. At its request, the Contracting State in which the accident or serious incident occurred (State of Occurrence) shall be provided with and have access to the necessary materials from ATS units/authorities involved (e.g. radar data recordings, tape transcriptions, etc.) in order to enable the conduct of an investigation into the accident or serious incident.

3. To enable the efficient and unimpeded inquiry the Contracting States shall allow the Contracting State(s) conducting the inquiry to carry out the necessary investigations on its territory. The Contracting States shall ensure that the Contracting State conducting the investigation is granted access to premises, facilities and materials of the ATS units/authorities referred to under paragraph (2).

4. The Contracting State(s) shall be given the opportunity to appoint observers to be present at the investigation initiated by the Contracting State over which territory the accident or serious incident occurred. At their request, the report and findings of the inquiry shall be communicated to all Contracting States.

Article 12

Search and Rescue

Search and Rescue operations in the territory of each Contracting State shall be conducted by the competent bodies/authorities of that individual Contracting State.

The search and rescue operations could also be organised jointly by the Contracting States. In such cases, States should also address the financial arrangements related to the provision of joint search and rescue operations. Procedures to be applied with respect to the alerting services shall be detailed in the applicable Letters of Agreement (LoA).
<table>
<thead>
<tr>
<th>Proposed Text</th>
<th>EXPLANATORY NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Article 13</td>
<td>This provision is meant to provide the mechanism that will apply between States in relation to a dispute regarding the interpretation and application of their rights and obligations derived from the implementation of this Agreement.</td>
</tr>
<tr>
<td>Dispute Resolution</td>
<td>The Liability provisions of Article 7 provide the structure/allocation of liability between the parties involved in the provision of air navigation services in case loss or damage would arise further to the implementation of this Agreement.</td>
</tr>
<tr>
<td>(1) If any dispute arises between the Contracting States regarding the interpretation or application of any provision of this Agreement, the Contracting States shall in the first place endeavour to settle it by negotiation.</td>
<td>Two or more Contracting States could be involved cross-border / FIR boundary operations. It seems fair that only those involved in an arbitration procedure should bear the arbitration costs.</td>
</tr>
<tr>
<td>(2) If the Contracting States are unable to resolve any disagreement by negotiation, the dispute shall be submitted for final decision to a third party (arbitrator) designated by the Contracting States involved.</td>
<td></td>
</tr>
<tr>
<td>(3) The costs of arbitration, including its fees and expenses, shall be shared equally by the Contracting States that are parties to the arbitration procedure.</td>
<td></td>
</tr>
<tr>
<td>Article 14</td>
<td></td>
</tr>
<tr>
<td>Termination</td>
<td></td>
</tr>
<tr>
<td>(1) The Contracting States may jointly decide to terminate the Agreement at any time after the expiry of [x] years from the date of its entry into force.</td>
<td></td>
</tr>
<tr>
<td>(2) The termination shall be effected by a written declaration of all Contracting States that the Agreement shall cease to have effect on a specified date [x] years after receipt of the request according to paragraph (1).</td>
<td></td>
</tr>
<tr>
<td>(3) The contracting Parties shall jointly determine and allocate the cost resulting from the termination.</td>
<td></td>
</tr>
</tbody>
</table>
Article 15

Suspension

1. In order to safeguard public order and security or in case of international tensions and conflicts, each Contracting State has the right to suspend the application of the Agreement or parts thereof. It shall notify the other States accordingly.

2. The Contracting State shall endeavour to terminate the suspension as soon as practicable.

3. The Contracting State that suspends the application of the Agreement or parts thereof shall bear the costs resulting from the suspension.

The Contracting States have to agree on measures to be taken by each individual State in the interest of public order and security or in case of international tensions and conflicts – this could be addressed in their contingency arrangements.

Article 16

Entry into Force and Duration

1. This Agreement shall enter into force as soon as the Contracting States have notified each other in writing of the completion of their respective constitutional requirements. It shall remain in force until terminated in accordance with Article 14 above.

2. The date on which cross-border/FIR boundary operations become operational shall be agreed by exchange of letters between the Contracting States.

Article 17

Amendment

1. If a Contracting State considers it desirable to amend any provisions of this Agreement it may request consultations with the other Contracting State(s).

2. The present Agreement may be modified only by an instrument in writing of equal formality, signed by the duly authorised representatives of the Contracting States.

3. The Appendices to the Agreement may be modified by exchange of letters between the duly authorised representatives of the Contracting States.
<table>
<thead>
<tr>
<th>Proposed Text</th>
<th>EXPLANATORY NOTES</th>
</tr>
</thead>
</table>
| **Article 18**

Transitional Measures for Agreements Already in Operation

Agreements which are in operation on the date of entry into force of this Agreement shall be assessed for possible revision in accordance with the provisions set out in this Agreement.

“Agreements already in operation” refers to agreements on coordination procedures as well as agreements at the State level.

In witness whereof, the undersigned, being duly authorised by their respective Governments, have signed this Agreement.

Done in duplicate at..........[place]........................, on[date]..........in English and (.....[language]........) languages. In case of any divergence of interpretation of the text, the English version shall prevail.

For the Government of

For the Government of
Appendix 1

Definitions

For the purpose of this Agreement, unless otherwise stated, the term:

1. “Agreement” means this Agreement, its Appendices and any amendments thereto.

2. “Airspace Management (ASM)” is a planning function with the primary objective of maximising the utilisation of available airspace by dynamic time-sharing and, at times, the segregation of airspace among various categories of users based on short-term needs. In future systems, airspace management will also have a strategic function associated with infrastructure planning. (ICAO)

 In the context of the Flexible Use of Airspace Concept, is a generic term covering any management activity at the three Strategic, Pre-tactical and Tactical Levels, provided for the purpose of achieving the most efficient use of airspace based on actual needs and, where possible, avoiding permanent airspace segregation.

3. “Airspace Management Cell (AMC)” is a joint civil/military cell responsible for the day-to-day management and temporary allocation of national or sub-regional airspace under the jurisdiction of one or more ECAC State(s).

4. “Airspace Reservation” is a defined volume of airspace normally under the jurisdiction of one aviation authority and temporarily reserved, by common agreement, for exclusive use by another aviation authority. (ICAO). In the context of the Flexible Use of Airspace Concept, airspace reservation includes “Temporary Reserved Area” (TRA) and “Temporary Segregated Area” (TSA).

5. “Air Traffic Control Service (ATC)” is a service provided for the purpose of:
 a) preventing collisions;
 1) between aircraft, and
 2) on the manoeuvring area between aircraft and obstructions, and
 b) expediting and maintaining an orderly flow of air traffic.
 (ICAO)

6. “Air Traffic Service (ATS)” is a generic term meaning variously, Flight Information Service, Alerting Service, Air Traffic Advisory Service, Air Traffic Control Service” (ICAO)
7. “Air Traffic Services Unit (ATSU) is a generic term meaning variously, air traffic control unit, flight information centre or air traffic services reporting office. (ICAO)

8. “AMC-Manageable Area” is an area subject to management and allocation by an AMC at ASM Level 2. Under the TAA Process, these manageable areas are either formal structures entitled ‘TRAs or TSAs’ or R and D Areas that are manageable at ASM Level 2 in the same way as TRA/TSAs.

9. “(Appropriate) ATS authority” means the relevant authority designated by the State responsible for providing air traffic services in the airspace concerned. (ICAO)

10. “Approved Agencies (AAs)” are units, which are authorised by a State to deal with an Airspace Management Cell for airspace allocation and utilisation matters.

11. “Area Control Centre (ACC)” is a unit established to provide air traffic control service to controlled flights in control areas under its jurisdiction. (ICAO)

12. “Civil/Military Coordination” is the communication between civil and military elements (human and/or technical) necessary to ensure safe, efficient and harmonious use of the airspace.

13. “Conditional Route (CDR)” is an ATS route or a portion thereof which can be planned and used under certain specified conditions. CDRs can be divided into different categories according to their foreseen availability, flight planning possibilities and the expected level of activity of the possible associated TRA/TSAs. A CDR can be established in one or more of the three following categories:

 a) Category One – Permanently Plannable CDR;

 b) Category Two – Non-Permanently Plannable CDR, and

 c) Category Three – Not Plannable CDR.
14. “Cross Border Area (CBA)” is an airspace restriction or reservation established over international borders for specific operational requirements. This may take the form of a Temporary Segregated Area or Temporary Reserved Area.

15. “Cross Border / FIR Boundary Operations” (CBO) is a process which encompasses activities conducted by one or more than one State, within an area established across national borders/FIR boundaries or entirely within airspace under the jurisdiction of one State.

16. “Danger Area (D)” is an airspace of defined dimensions within which activities dangerous to the flight of aircraft may exist at specified times. (ICAO)

In the context of the Flexible Use of Airspace Concept, some Danger Areas subject to management and allocation at ASM Level 2 are established at ASM Level 1 as “AMC-Manageable Areas” and identified as such in Aeronautical Information Publication.

17. “Delegation of ATS” means the delegation from one State (the Delegating State) to another State (the Providing State) of the responsibility for providing air traffic services in a portion of airspace extending over the territories of the former.

18. “Flexible Use of Airspace (FUA) Concept” is based on the fundamental principle that airspace should not be designated as either pure civil or military airspace, but rather be considered as one continuum in which all user requirements have to be accommodated to the extent possible.

19. “Flight Information Region (FIR)” is airspace of defined dimensions within which flight information service and alerting service are provided. (ICAO)

20. “General Air Traffic (GAT) encompasses all flights conducted in accordance with the rules and procedures of ICAO and/or the national civil aviation regulations and legislation.

GAT can include military flights for which ICAO rules and procedures satisfy entirely their operational requirements. (HBK)

21. “ASM Level 1 - Strategic ASM” is the act of defining and reviewing, as required, the national airspace policy taking into account national and international airspace requirements. (HBK)

22. “ASM Level 2 - Pre-Tactical ASM” is the act of conducting operational management within the framework of predetermined existing ATM structure and procedures defined in Level 1 and of reaching specific agreement between civil and military authorities involved. (HBK)

23. “ASM Level 3 - Tactical ASM” is the act, on the day of operation, of activating, deactivating or real time reallocating of airspace allocated in ASM Level 2 and of solving specific airspace problems and/or of individual OAT/GAT traffic situations in real time between civil and military ATS units and/or controllers, as appropriate. This coordination can take place either in active or passive mode with or without action by the controller. (HBK)
24. “Operational Air Traffic (OAT)” encompasses all flights which do not comply with the provisions stated for GAT and for which rules and procedures have been specified by appropriate national authorities.

OAT can include civil flights such as test-flights, which require some deviation from ICAO rules to satisfy their operational requirements. (HBK)

25. “Originating State” means the State from where the cross border / FIR boundary operations have been originated.

26. “Providing State” means the State that is accommodating cross border / FIR boundary operations.

27. “Restricted Area (R)” is an airspace of defined dimensions, above the land areas or territorial waters of a State, within which the flight of aircraft is restricted in accordance with specific conditions. (ICAO) In the context of the FUA Concept, some Restricted Areas are subject to management and allocation at ASM Level 2 are established at ASM Level 1 as “AMC-Manageable Areas” and identified as such in AIP. (HBK)

28. “Temporary Airspace Allocation (TAA) Process” consists in the allocation process of an airspace of defined dimensions assigned for the temporary reservation (TRA/TSA) or restriction (D/R) and identified more generally as an "AMC-manageable" area. (HBK)

29. “Temporary Reserved Area (TRA)” is a defined volume of airspace normally under the jurisdiction of one aviation authority and temporarily reserved, by common agreement, for the specific use by another aviation authority and through which other traffic may be allowed to transit, under ATC clearance. (HBK)

30. “Temporary Segregated Area (TSA)” is a defined volume of airspace normally under the jurisdiction of one aviation authority and temporarily segregated, by common agreement, for the exclusive use by another aviation authority and through which other traffic will not be allowed to transit. In the context of the FUA Concept, all TRAs and TSAs are airspace reservations subject to management and allocation at ASM Level 2. (HBK)

31. “Territory” in relation to a State, has the meaning specified in Article 2 of the Chicago Convention.

Article 2 of the Chicago Convention: “Territory: For the purposes of this Convention the territory of a State shall be deemed to be the land areas and the territorial waters adjacent thereto under the sovereignty, suzerainty, protection or mandate of such State.”
LETTER OF AGREEMENT
on
Coordination Procedures between Airspace Management Cells (AMCs)
in regard to
Allocation and Shared Use of Common Cross Border Areas (CBAs)
between
[Approving Authority State A] [Approving Authority State B]
and
[AMC 1/ACC 1] [AMC 2/ACC 2]

Effective:

1. General

1.1 Purpose

1.1.1 The purpose of this Letter of Agreement is to define the coordination procedures which will be applied between [AMC 1/ACC 1] and [AMC 2/ACC 2] for:

- the airspace allocation of different parts of Cross-Border Areas (CBAs) defined in the AIPs of States concerned;
- the availability of specific Conditional Routes (CDRs), including, where appropriate, weekend procedures.

These coordination procedures shall take place prior to the publication of the relevant Airspace Use Plans (AUPs).

1.1.2 These procedures are supplementary to the State Level Framework Agreement on the Cross-Border / FIR Boundary Operations concluded between [State 1] and [State 2] [relevant details to be included].

1.2 Operational Status

1.2.1 [AMC 1/ACC 1/AMC 2/ACC 2] shall keep each other and the Central Airspace Data Function (CADF) advised of any changes in the operational status of their facilities which may affect the procedures specified in this Letter of Agreement.
2. **Areas of Responsibility - Delegation of Responsibility to a Lead AMC**

2.1 The Areas of Responsibility of [AMC 1/ACC 1] and [AMC2/ACC2] are described in Appendix B to this Letter of Agreement.

2.2 [AMC 1/ACC 1] and [AMC2/ACC2] have mutually delegated to the other AMC designated as "Lead AMC" on a route by route and/or area by area basis the responsibility for coordinating and publishing the harmonised availability of Cross-Border CDRs and CBAs as described in Appendix B to this Letter of Agreement.

2.3 During declared national holidays as described in Appendix F, the Lead AMC responsibility reverts to the other AMC. Such information shall be transmitted to the NM/CADF. In case the Lead AMC is designated for a limited period of time it is recommended that the change of AMC status to be done at AIRAC date. The AMC change of roles can be executed more dynamic when the system capabilities permit.

3. **Routes and/or CBAs to be Coordinated prior to publication of the respective Airspace Use Plans**

3.1 The Cross-Border Areas and Conditional Routes to be coordinated prior to publication of the respective Airspace Use Plans are described in Appendix C to this Letter of Agreement.

4. **Promulgation and Distribution of Information on Availability of Cross-Border Structures**

4.1 Each AMC (a Lead AMC or another AMC) creates its national AUP for its relevant portion of the Cross-Border Area and/or Cross-Border CDR according to the provisions of the present Letter of Agreement.

or

4.1 The Lead AMC creates its national AUP for all the Cross-Border structures it has the responsibility according to the provisions of this Letter of Agreement, including the appropriate extension within neighbouring FIR/UIR(s). Therefore, an AMC not designated as Lead AMC, shall not include any information in its national AUP/UUP on cross-border structures for which a Lead AMC is designated.

4.2 The current procedures for promulgation and distribution of information on availability of CDRs and TRAs/TSAs other than Cross-Border structures remain unaffected.

5. **Coordination Procedures**

5.1 The procedures to be applied by [AMC 1/ACC 1] and [AMC2/ACC2] are detailed in the Appendices to this Letter of Agreement:

- **Appendix A**: Definitions and Abbreviations.
- **Appendix B**: Responsibilities of [AMC 1/ACC 1/AMC 2/ACC2] - Delegation of Responsibilities to a "Lead AMC".
- **Appendix C**: CBAs and Conditional Routes to be Coordinated.
- **Appendix D**: Procedures for the Coordination of Cross-Border Areas and/or Conditional Routes availability prior to AUP Publication.
- **Appendix E**: Communications Facilities.
- **Appendix F**: Hours of Operation of [AMC 1/ACC 1/AMC 2/ACC 2], Fall-Back Procedures and Declared National Holidays.
6. Revisions and Deviations

6.1 Revision of the Letter of Agreement

6.1.1 Revisions to this Letter of Agreement, excluding Appendices, require the mutual consent of the signatory authorities.

6.1.2 Revisions to the Appendices to this Letter of Agreement require the mutual consent of, normally, the civil and military representatives of the AMC/ACCs.

6.2 Temporary Deviations

6.2.1 When necessary, the AMC/ACCs concerned may introduce, by mutual agreement and for a specified time periods, temporary modifications to the procedures laid down in this Letter of Agreement.

6.3 Incidental Deviations

6.3.1 Instances may arise where incidental deviations from the procedures specified in the Appendices to this Letter of Agreement may become necessary. Under these circumstances AMC/ACC staff is expected to exercise their best judgment to ensure efficient [AMC 1/ACC 1/AMC 2/ACC 2] coordination.

7. Cancellation

7.1 Cancellation of this Letter of Agreement by mutual agreement of the respective Approving Authorities may take place at any time.

7.2 Cancellation of this Letter of Agreement by either Approving Authority is possible at any time, provided that the cancelling party declares its intention to cancel the Letter of Agreement with a minimum pre-notification time of [time period] before the date the cancellation is to take effect.

8. Interpretation and Settlement of Disputes

8.1 Should any doubt or diverging views arise regarding the interpretation of any provision of this Letter of Agreement or in case of dispute regarding its application, the parties shall endeavour to reach a solution acceptable to both of them.

8.2 Should no agreement be reached, each of the parties shall refer to its superior national authority, to which the dispute shall be submitted for settlement.
9. **Validity**

This Letter of Agreement becomes effective [date]

[Place], date: [Place], date:

[name]
[Approving Civil Authority State A]

[Place], date:

[name]
[Approving Civil Authority State B]

[Place], date:

[name]
[Approving Military Authority State A]

[Place], date:

[name]
[Approving Military Authority State B]

[Place], date:

[name of civil representative of AMC 1/ACC1]

[Place], date:

[name of civil representative of AMC2/ACC2]

[Place], date:

[name of military representative of AMC 1/ACC1]

[Place], date:

[name military representative AMC2/ACC2]
Appendix A

Definitions and Abbreviations.

Effective:
Revised:

A.1 Definitions

A.1.1. AMC Area of Responsibility

An airspace of defined dimensions where a sole AMC has responsibility for pre-tactical airspace management coordination.

A.1.2. Lead AMC

A predetermined AMC responsible for the coordination with adjacent AMCs of the harmonised allocation of Cross Border Areas (CBAs) and/or the availability of specific Cross-Border CDRs.

A.2 Abbreviations

Note: Abbreviations marked with an * are non-ICAO abbreviations.
Appendix B

Responsibility of [AMC 1/ACC 1/AMC 2/ACC2]

Delegation of Responsibility to a Lead AMC

Effective:
Revised:

B.1 Area of Responsibility of the [AMC 1/ACC 1]

B.1.1 Details of the Area of Responsibility of AMC 1/ACC 1.

B.2 Area of Responsibility of the [AMC2/ACC2]

B.2.1 Details of the Area of Responsibility of AMC 2/ACC 2.

B.3 Delegation of Responsibility to the Lead AMC 1

B.3.1 Details of the responsibility of/to AMC 1/ACC 1.

B.4 Delegation of Responsibility to the Lead AMC 2

B.4.1 Details of the Responsibility of/to AMC 2/ACC 2.
Appendix C

Cross-Border Areas and Conditional Routes to be Coordinated

Effective:
Revised:

C.1 Cross-Border Areas (CBAs) to be Coordinated.

Including details of sub-divided portions, boundary positions, relevant flight levels and delegations.

C.2 Conditional Routes to be Coordinated.

Including details of route portions, boundary positions, relevant flight levels and delegations relevant for the application of Lead AMC Concept. These routes will be communicated to NM for enabling their allocation by the Lead AMC.
Appendix D

Procedures for the Coordination of
Cross-Border Areas and/or Conditional Route Availability
Prior to AUP Publication

Effective:
Revised:

D.1 General Provisions.

D.1.1

D.2 Coordination Procedures.

D.2.1 [AMC 1/ACC 1] is responsible for the Lead-AMC coordination of the following CBAs and/or CDRs:

•

D.2.2 [AMC 2/ACC 2] is responsible for the Lead-AMC coordination of the following CBAs and/or CDRs:

•

D.3 Allocation Procedures

D.3.1 The following priority allocation rules, time based parameters and booking assurance instruments apply:

•

D.3 Air Defence Coordination and Notification Procedures

(if applicable)
Appendix E

Communications Facilities

Effective:
Revised:

E.1 Means of Communications and their Use

E.1.1 Equipment

The following lines are available between [AMC 1/ACC 1] and [AMC2/ACC2]:

- [X] data line [s]
- [X] telephone line [s]
- [X] fax line [s]

E.2 Telephone Co-ordination

E.2.1 All telephone communications should be terminated with the initials of the staff parties concerned.
Appendix F

Hours of Operation of [AMC1/ACC1/AMC 2/ACC2] and Fall-Back Procedures

Effective:
Revised:

F.1 Hours of Operation of the ACCs/AMCs.

F.1.1 The Hours of Operation of [AMC 1/ACC 1] are as follows:

-
-
-

F.1.2 The Hours of Operation of [AMC 2/ACC 2] are as follows:

-
-
-

F.2 Fall-Back Procedures for Coordination

In the event of failure of the direct lines between the coordinating partners, coordination may be effected via:

a) switchboard, or
b) [other common coordination partner], or
c) public telephone:

[AMC 1/ACC 1]: [additional listing of available public telephone numbers to the operations room and the relevant working positions, if available]

In the event of the closure of [AMC1/ACC1] the fall-back coordination point is [detail]:

[AMC 2/ACC2]: [additional listing of available public telephone numbers to the operations room and the relevant working positions, if available]

In the event of the closure of [AMC2/ACC2] the fall-back coordination point is [detail]:

F.3 Declared National Holidays

By the end of every year, [AMC1/ACC1] and [AMC2/ACC2] shall provide the other AMC/ACC and the NM/CADF with the list of declared national holidays for the following year which may impact on the allocation process of cross-border structures described in the present Letter of Agreement.
This page intentionally left blank
LETTER OF AGREEMENT
on
Coordination Procedures
in regard to
Cross-Border Operations in Shared AMC-Manageable Areas
between
[Approving Authority Originating State] [Approving Authority Host State]
and
[Originating AMC & ACC] [Host AMC & ACC]

Effective:

1 General

1.1 Purpose

1.1.1 The purpose of this Letter of Agreement is to define the coordination procedures which will be applied between [Originating AMC & ACC] and [Host AMC & ACC] for the allocation and shared use of national areas (TRAs/TSAs, including AMC-manageable D and R areas) entirely established within the airspace under the jurisdiction of one of the Host AMC & ACC.

1.1.2 The coordination procedures between [Originating AMC] and [Host AMC] shall take place prior to the publication of the relevant Airspace Use Plans (AUPs).

1.1.3 The coordination procedures between [Originating ACC] and [Host ACC] shall take place prior to transiting to and operation in the area(s) subject to sharing.

1.1.4 These procedures are supplementary to the State Level Framework Agreement on the Cross-Border / FIR Boundary Operations concluded between [Originating State] and [Host State].

1.2 Operational Status

1.2.1 Participating AMCs shall keep each other and the Central Airspace Data Function (CADF) advised of any changes in the operational status of their facilities which may affect the procedures specified in this Letter of Agreement.

2 Areas Subject to Sharing

2.1 The area(s) that are subject to cross-border sharing between [Originating State] and [Host State] are defined in Appendix B.
3 Jurisdiction

3.1 The AMC of the [Host State] in the area(s) subject to cross-border sharing [Host AMC] is responsible for airspace allocation in accordance with the provisions of this Letter of Agreement. Standard procedures for creation of AUP/UUP remain unaffected.

3.2 The ACC(s) of the [Host State] having jurisdiction over the area(s) subject to cross-border sharing [Host ACC(s)] is responsible for provision of ATS for aircraft transiting from the [Originating State] to the area(s) subject to cross-border sharing and/or operating inside the area subject to cross-border sharing in accordance with the provisions of this Letter of Agreement.

4 Airspace Management (ASM) Procedures

4.1 Common Language

4.1.1 Any exchange of written requests and notifications, as well as the verbal coordination is performed in [to be specified] language.

4.2 Airspace Sharing Request and Vacancy Notification

4.2.1 The [Originating AMC] initialises airspace sharing in the [Host State] by sending appropriate written request to the [Host AMC].

4.2.2 The [Host AMC] notifies daily the [Originating AMC] of the potential vacancy slots within the area(s) subject to sharing.

4.2.3 The exchange of request and/or vacancy notification is supplemented by verbal coordination between the two AMCs as appropriate.

4.2.4 The content of the request and notification, together with notification means are described in the Appendix C.

4.3 Booking, Allocation and Allocation Notification

4.3.1 The procedures related to booking, allocation and allocation notification of airspace in the area(s) subject to sharing are specified in the Appendix D, in particular:

(1) Periods of activity taking into consideration the national holidays of the States concerned;
(2) Subdivision of the area(s) subject to sharing;
(3) Booking method(s) (e.g. ASM tool, fax, other);
(4) Booking assurance instruments;
(5) Maximum number of participating aircraft;
(6) Priority allocation rules;
(7) Time based parameters;
(8) Allocation notification method (e.g. ASM tool, fax, other);
(9) Communication with the parent unit;
(10) (Additional items as appropriate)
4.4 **ATS Related Procedures**

4.4.1 The ATS related procedures are specified in Appendix E, in particular:

1. Responsibility and liability for the provision of ATS to the aircraft transiting to and operating in the area(s) subject to sharing;
2. Airspace classification relevant to the aircraft transiting to and operating in the area(s) subject to sharing;
3. Minimum ATS facilities (e.g. primary radar, secondary radar, operating frequencies, telephone lines etc.)
4. Language used in the provision of ATS;
5. Flight plan data exchange, revision to previously provided and/or coordinated flight plan data;
6. ATC sectorisation;
7. ATC procedures, in particular:
 - Transfer of identity;
 - Transfer of control;
 - Transfer of communication;
 - SSR code assignment (CCAMS States in coordination with NM);
 - Communication facilities and procedures;
 - Transit procedures;
 - Procedures within the area(s) subject to cross-border sharing
 - Procedures for unmanned flights (e.g. UAV);
 - Separation criteria;
 - Buffers applied in relation to area(s) subject to sharing;
 - ATC coordination;
8. ATS occurrence reporting;
9. (Additional items as appropriate.)

5 **Contingency Procedure**

5.1 The contingency procedures are specified in Appendix F, in particular

1. Alerting Service;
2. Service to the aircraft in the event of an emergency;
3. Steps to be taken in case of in-flight contingencies;
4. Steps to be taken in case of interception of (civil) aircraft and/or unlawful use of the airspace;
5. Information exchange between appropriate civil and military authorities / units;
6. Failure of ground-ground communication;
7. Failure of air-ground communication;
8. (Additional items as appropriate).
6 Revisions, Deviations and Cancellation

6.1 Revision of the Letter of Agreement
6.1.1 Revision of this Letter of Agreement, excluding Appendices, requires the mutual consent of the signatory authorities.

6.1.2 Revision of the Appendices to this Letter of Agreement requires the mutual consent of both civil and military representatives of the AMCs and/or ACCs concerned.

6.2 Temporary Deviations
6.2.1 When required, the AMCs and/or ACCs concerned may introduce, by mutual agreement and for a specified time periods, temporary modifications to the procedures laid down in this Letter of Agreement.

6.3 Incidental Deviations
6.3.1 Instances may arise where incidental deviations from the procedures specified in the Appendices to this Letter of Agreement may become necessary. Under these circumstances AMC/ACC staff is expected to exercise their best judgment to ensure efficient coordination.

6.4 Cancellation
6.4.1 Cancellation of this Letter of Agreement may take place at any time by mutual agreement of the respective Approving Authorities.

6.4.2 Cancellation of this Letter of Agreement by any of the Approving Authorities is possible at any time, provided that the cancelling party declares its intention to cancel the Letter of Agreement with a minimum pre-notification time of [time period] before the date the cancellation is to take effect.

7 Interpretation and Settlement of Disputes

7.1 In case of any doubt or diverging views arise regarding the interpretation of any provision of this letter of agreement or in case of dispute regarding its application, the parties shall endeavour to reach a solution acceptable to both of them.

7.2 Should no agreement be reached, each of the parties shall refer to its superior national authority, to which the dispute shall be submitted for settlement.
8 Validity

8.1 This Letter of Agreement becomes effective [date]

[Place], date:

[name]
[Approving Civil Authority State A]

[Place], date:

[name]
[Approving Civil Authority State B]

[Place], date:

[name]
[Approving Military Authority State A]

[Place], date:

[name]
[Approving Military Authority State B]

[Place], date:

[name of civil representative of the Originating AMC and ACC]

[Place], date:

[name of civil representative of the Host AMC and ACC]

[Place], date:

[name of military representative of the Originating AMC and ACC]

[Place], date:

[name military representative of the Host AMC and ACC]
Appendix A

Definitions and Abbreviations.

Effective:
Revised:

A.1 Definitions

A.1.1 Area Subject to Cross-Border Sharing
An airspace of defined dimensions where aircraft from another State may operate.

A.1.2 Host ACC
An ACC responsible for ATS provision in the Host State.

A.1.3 Host AMC
An AMC responsible for airspace planning and allocation in the Host State.

A.1.4 Originating ACC
An ACC responsible for ATS provision in the Originating State.

A.1.5 Originating AMC
An AMC responsible for airspace planning and allocation in the Originating State.

A.1.5 Originating State
A State from which aircraft that operate in an area subject to cross-border sharing are originated.

A.2 Abbreviations

Note: Abbreviations marked with an * are non-ICAO abbreviations.
This page intentionally left blank
Appendix B

List of Areas Subject to Cross-Border Sharing

Effective:
Revised:

B.1 List of Areas Applicable

B.1.1 **TRA or TSA or D or R area [x]** (Details describing position, coordinates, sub-divided portions, applicable flight levels and other relevant information as appropriate).

B.1.2 …
This page intentionally left blank
Appendix C

Airspace Sharing Request and Vacancy Notification

Effective:
Revised:

C.1 Airspace Sharing Request Format and Content
(Details of Airspace Sharing Request to be described here).

C.2 Airspace Sharing Vacancy Notification
(Details of Airspace Sharing Vacancy Notification to be described here).

C.3 Means of Airspace Sharing Request and Vacancy Notification
(Means of exchanging Airspace Sharing Request and Vacancy Notification to be described here, e.g. using ASM Tool, fax, email, etc.).
This page intentionally left blank
Appendix D

Booking, Allocation and Allocation Notification

Effective:
Revised:

D.1 General Provisions.
D.1.1 The following procedures related to booking, allocation and allocation notification of airspace in the area(s) subject to cross-border sharing apply:

D.2 Periods of Activity
D.2.1 (Details of potentially available activation periods of the area(s) subject to cross-border sharing to be specified).

D.3 Subdivision of the Area(s) Subject to Cross-Border Sharing
D.3.1 (Details of subdivision to be specified if applicable).

D.4 Booking Method(s)
D.4.1 (Details of agreed methods to be specified, e.g. responsibilities, procedures, means, etc.)

D.5 Booking Assurance Instruments
D.5.1 (Details of agreed booking assurance instruments to be specified).

D.6 Maximum Number of Participating Aircraft
D.6.1 (Maximum agreed number of participating aircraft in the area(s) subject to cross-border sharing to be specified).

D.7 Priority Allocation Rules
D.7.1 (Agreed priority airspace allocation rules in the area(s) subject to cross-border sharing to be specified).

D.8 Time-Based Parameters
D.8.1 (Any time-based parameters related to airspace allocation in the area(s) subject to cross-border sharing to be specified).

D.9 Allocation Notification Method
D.9.1 (The agreed format, content and the means of airspace allocation in the area(s) subject to cross-border sharing to be specified).

D.10 Communication with Parent Unit
D.10.1 (Roles and responsibilities of communication with a parent unit(s) of aircraft transiting to operate in the area(s) subject to cross-border sharing to be specified).

D.11 (Additional items as appropriate)
Appendix E

ATS Procedures

Effective:
Revised:

E.1 Responsibility and Liability for Provision of ATS
E.1.1 The [ACC] is responsible and liable for the provision of ATS to the aircraft transiting from the Originating State to the area(s) subject to cross-border sharing. (Detailed transit conditions to be specified).
E.1.2 The [ACC and/or appropriate Air Defence Unit] is responsible and liable for the provision of ATS to the aircraft operating within the area(s) subject to cross-border sharing. (Detailed operating conditions to be specified).
E.1.3 (Additional details relevant to responsibility and liability to be specified).

E.2 Airspace Classification
E.2.1 (Details of airspace classification relevant to the aircraft transiting to the area(s) subject to cross-border sharing if applicable).
E.2.2 (Details of airspace classification relevant to the aircraft operating within the area(s) subject to cross-border sharing if applicable).

E.3 Minimum ATS Facilities
(The following minimum agreed ATS facilities to be specified):
E.3.1 (Radar service details, e.g. primary and/or secondary radar service for each aircraft transiting to and operating within the area(s) subject to cross-border sharing).
E.3.2 (Operating frequencies, e.g. frequencies relevant for each phase of a flight).
E.3.3 (Ground-ground communication facilities).
E.3.4 (Other applicable facilities).

E.4 Language Used in ATS Provision
E.4.1 In communication with aircraft transiting to or operating within the area(s) subject to cross-border sharing [language] and/or [language] is used.
E.4.2 (Details of language applicable to different phases of the flight of aircraft transiting to or operating within the area(s) subject to cross-border sharing if more than one language applies).

E.5 Flight Plan Data Exchange
E.5.1 (Specify flight plan data exchange requirements, formats and means).
E.5.2 (Specify methods, timing, format and means of revision to previously provided and/or coordinated flight data).

E.6 ATC Sectorisation
E.6.1 (Specify ATC sectorisation relevant for transiting to or operating within the area(s) subject to cross-border sharing).
E.7 ATC Procedures

E.7.1 Transfer of identity
E.7.2 Transfer of control
E.7.3 Transfer of communication
E.7.4 SSR code assignment (CCAMS States in coordination with NM);
E.7.5 Communication facilities and related procedures
E.7.6 Transit procedures
E.7.7 Procedures within the area(s) subject to Cross-Border Sharing
E.7.8 Procedures for unmanned operating flights
E.7.8 Separation criteria
E.7.9 Buffers applied in relation to area(s) subject to sharing
E.7.10 ATC Coordination procedures
E.7.11 (Other if applicable).

E.8 ATS Occurrence Reporting

E.8.1 (Specify format, content and means of ATS occurrence reporting).

E.9 (Additional Items as appropriate)
Appendix F

Contingency Procedures

Effective:
Revised:

F.1 Contingency Procedures
(Applicable procedures specific for each contingency to be specified in detail)

F.1.1 Alerting Service
F.1.2 Service to aircraft in emergency
F.1.3 In-flight contingencies
F.1.4 Interception of (civil) aircraft / unlawful use of airspace
F.1.5 Information exchange between civil and military authorities / units
F.1.6 Failure of ground-ground communication
F.1.7 Failure of air-ground communication
F.1.8 (Additional items as appropriate).
ASM-NM AGREEMENT

between

Airspace Management Cell of State X
(hereinafter “AMC”)

and

the European Organisation for the Safety of Air Navigation
(hereinafter EUROCONTROL)

on

Flexible Use of Airspace Coordination and Contingency Procedures

Effective:
1. PURPOSE

1.1 The purpose of this ASM-NM Agreement is to set out the coordination and contingency procedures to be applied between AMC and EUROCONTROL as required for the implementation of the FUA concept.

2. SCOPE

2.1 The roles and responsibilities of the AMC and EUROCONTROL relating to the FUA Concept as well as the applicable procedures are described in the EUROCONTROL ASM Handbook and the Flexible Use of Airspace AMC/CADF Operations Manual, referred to in paragraph 3 below.

2.2 This ASM-NM Agreement sets out in Annex B, where necessary, the complementary procedures (Specific National Contingency Measures) to be applied in addition to the contingency procedures described in paragraph 4.

3. CO-ORDINATION PROCEDURES

3.1 AMC and EUROCONTROL shall apply the co-ordination procedures set out in the following documents:

a) EUROCONTROL Specification for the application of the Flexible Use of the Airspace (FUA) [Edition 1.1, dated 10.01.2009, EUROCONTROL-SPEC-0112, Chapter 4];

b) European Route Network Improvement Plan Part 3 - Airspace Management Guidelines - The ASM Handbook Edition 5.4 - dated 29 November 2017 (Section 2, paragraphs 2.2.3; 2.3; 2.6.3; Section 4, and Section 6);

c) Flexible Use of Airspace AMC/CADF Operations Manual Edition 9.0, dated 16.03.2017; and

d) FTIs (FUA Temporary Instructions);

3.2 The documents referred to in paragraph 3 above and any specific procedures set out at Annex B to this Letter of Agreement form an integral part thereof.

3.3 It is understood that it will always be the latest versions of the documents referred to in paragraph above that will be applicable. The latest version can be found on the dedicated Airspace library sections of the EUROCONTROL website and under the specific web links indicated.

4. CONTINGENCY PROCEDURES

4.1 The generic contingency procedures are described in Annex B.

4.2 Additional specific AMC contingency requirements will be presented in Appendix to Annex B.

4.3 In case of temporary measures, a dedicated FTI will be prepared between AMC and EUROCONTROL.
5. PUBLICATION OF AUP/UUP DATA

5.1. In addition to the information related to the CDRs status, EUROCONTROL is authorised to provide public access through its NOP Portal to the following information related to the manageable areas published in the AUPs/UUPs:

a) AIP areas designator;

b) Flight level block, and

c) Validity period.

5.2. Any other information related to the areas published in AUPs/UUPs has to be considered as “restricted”, with access limited to national civil and military units.

6. AMENDMENTS AND DEVIATIONS

6.1. Amendments

a) Amendments of this ASM-NM Agreement require the mutual consent of the Parties at the level of the signatories of the ASM-NM Agreement in writing.

b) The revision of the Annexes to this ASM-NM Agreement requires the mutual consent of:

AMC: Head of AMC and

EUROCONTROL: Head of Network Operations Services

6.2. Temporary Deviations

a) If necessary and subject to the prior approval by EUROCONTROL, the AMC may introduce temporary deviations (i.e. FTI) from the procedures laid down in this ASM-NM Agreement.

b) The AMC responsible person will trigger the co-ordination by e-mail, fax or telephone providing identification number.

c) The FTI shall override the contents of this ASM-NM Agreement if established in accordance with the procedures contained in paragraph 4.9. of the ASM Handbook and if established in accordance with paragraph 6.2. a) above.

6.3 Incidental Deviations

In situations where urgency requires incidental deviation from the procedures specified in this ASM-NM Agreement without following the formal requirements set out in paragraphs 6.1. and 6.2. above, AMC and EUROCONTROL staff are expected to exercise their joint best judgment to ensure efficient co-ordination.

7. DISPUTE SETTLEMENT

7.1. The Parties shall endeavour to reach an acceptable solution between them on any dispute relating to this ASM-NM Agreement.

7.2. In the event that the Parties should be unable to find an amicable solution, each Party shall refer the dispute to its superior authority and/or body for final and binding settlement.
9. ENTIRE AGREEMENT
9.1. This ASM-NM Agreement and its attached Annexes represent the entire agreement between the Parties and supersede any previous oral or written agreements regarding the same subject matter.

10. ENTRY IN TO EFFECT - DURATION - TERMINATION
10.1. This ASM-NM Agreement shall enter into effect on the date of its signature by both Parties

10.2. This ASM-NM Agreement shall remain in effect for an indeterminate period.

10.3. This ASM-NM Agreement may be terminated by either Party at any time, subject to providing the other Party with 60 (sixty) calendar days written notice.

Done in two (2) originals

For State X
Signature
Date:

For EUROCONTROL
For and on behalf of the Director General
Signature
Joe SULTANA
Director Network Manager
Date:
DEFINITIONS AND ABBREVIATIONS

For the purposes of this ASM-NM Agreement and the documents:

The ICAO definitions are shaded.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>Approved Agency, i.e. the unit, which is authorised by a State to deal with an AMC for airspace allocation and utilisation matters.</td>
</tr>
<tr>
<td>ACC</td>
<td>Area Control Centre, i.e. a unit established to provide air traffic control service to controlled flights in control areas under its jurisdiction.</td>
</tr>
<tr>
<td>Ad-hoc Structures</td>
<td>airspace structures, whether routes or areas, required to meet operational needs at shorter notice than Level 1 process. The establishment of such ad-hoc structure at Level 2 or Level 3 should follow the general design and safety management criteria.</td>
</tr>
<tr>
<td>AFTN</td>
<td>Aeronautical Fixed Telecommunications Network.</td>
</tr>
<tr>
<td>AIP</td>
<td>Aeronautical Information Publication.</td>
</tr>
</tbody>
</table>
| Airspace Reservation | a defined volume of airspace normally under the jurisdiction of one aviation authority and temporarily reserved, by common agreement, for exclusive use by another aviation authority.
In the context of the FUA Concept, airspace reservation includes TRA and TSA. |
| Airspace Structures | specific portions of airspace designed to accommodate the safe operation of aircraft.
In the context of the FUA Concept, "Airspace Structures" include Controlled Airspace, ATS Route, ATC Sectors, D, R, P, TSA, TRA, and CBA. |
| AIM | ATFCM Information Message. |
| AIS | Aeronautical Information Service. |
| AMC | Airspace Management Cell, i.e. a joint civil/military cell responsible for the day-to-day management and temporary allocation of national or sub-regional airspace under the jurisdiction of one or more ECAC State(s). |
| AMC-Manageable Area | an area subject to management and allocation by an AMC at Level 2.
Under the TAA Process, these manageable areas are either formal structures entitled TSAs or TRAs or R and D Areas that are manageable at Level 2 in the same way as TSAs / TRAs. |
<p>| AMC-AUP contingency template | a template AUP established and maintained under the responsibility of the State/AMC and provided in advance to NM/CADF for implementation in specific cases where the nominal AUP procedure cannot be followed. |
| ATC | Air traffic control. |
| ATS | Air traffic services. |
| ATM | Air traffic management. |</p>
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASM</td>
<td>means Airspace Management, i.e. a planning function with the primary objective of maximising the utilisation of available airspace by dynamic time-sharing and, at times, the segregation of airspace among various categories of users based on short-term needs. In future systems, airspace management will also have a strategic function associated with infrastructure planning. In the context of the FUA Concept, airspace management is a generic term covering any management activity at the three Strategic, Pre-tactical and Tactical Levels, provided for the purpose of achieving the most efficient use of airspace based on actual needs and, where possible, avoiding permanent airspace segregation.</td>
</tr>
<tr>
<td>ATFM</td>
<td>means Air Traffic Flow Management, i.e. a service established with the objective of contributing to a safe, orderly and expeditious flow of air traffic by ensuring that ATC capacity is utilised to the maximum extent possible, and that the traffic volume is compatible with the capacities declared by the appropriate ATS authority.</td>
</tr>
<tr>
<td>ATFCM</td>
<td>means Air Traffic Flow and Capacity Management, i.e. a service that is enhancing ATFM with the objective of managing the balance of demand and capacity by optimising the use of available resources and coordinating adequate responses, in order to enhance the quality of service and the performance of the ATM system.</td>
</tr>
<tr>
<td>AUP</td>
<td>means Airspace Use Plan, i.e. an ASM message of NOTAM status notifying the daily decision of an AMC on the temporary allocation of the airspace within its jurisdiction for a specific time period, by means of a standard message format.</td>
</tr>
<tr>
<td>CACD</td>
<td>means Central Airspace and Capacity Database (formerly known as CACD – Environment Database).</td>
</tr>
<tr>
<td>CADF</td>
<td>means Centralised Airspace Data Function, i.e. an ASM function entrusted to the NM by the ECAC States for consolidating information contained in the various national AUPs/UUP and published on the NOP Portal as EAUP/EUUP.</td>
</tr>
<tr>
<td>CBA</td>
<td>means Cross Border Area, i.e. an airspace restriction or reservation established over international borders for specific operational requirements. This may take the form of a TSA or TRA.</td>
</tr>
</tbody>
</table>
| CDR | means Conditional Route, i.e. an ATS route that is only available for flight planning and use under specified conditions. *A CDR may have more than one category, and those categories may change at specified times:*
 a) **Category One - Permanently Plannable CDR:**
 CDR1 routes are in general available for flight planning during times published in the relevant national AIP. Updated information on the availability in accordance with conditions published daily in EAUPs/EUUPs.
 b) **Category Two - Non-Permanently Plannable CDR:**
 CDR2 routes may be available for flight planning. Flights may only be planned on a CDR2 in accordance with conditions published...
| CIAM | means Collaborative Interface Airspace Management (previously the CFMU Interface for Airspace Managers). |
| D | means Danger Area is an airspace of defined dimensions within which activities dangerous to the flight of aircraft may exist at specified times. |
| DNM | means the EUROCONTROL Directorate Network Management. |
| DOC | means Document. |
| ECAC | means the European Civil Aviation Conference. |
| EAUP | means European AUP. |
| Flight Plan | means a document containing specified information provided to air traffic services units, relative to an intended flight or portion of a flight of an aircraft. |
| FMP | means Flow Management Position, i.e. a working position established within an ACC to ensure the necessary interface with EUROCONTROL on matters concerning the provision of the ATFM Service and the interface with national AMCs on matters concerning the ASM Service. |
| FTI | means FUA Temporary Instruction, i.e. is a temporary instruction published by EUROCONTROL and agreed/applied by appropriate AMCs and the CADF for all or for a part, of the FUA area. |
| FUA Concept | means Flexible Use of Airspace Concept is based on the fundamental principle that airspace should not be designated as either pure civil or military airspace, but rather be considered as one continuum in which all user requirements have to be accommodated to the extent possible. |
| IFPS | means Integrated Initial Flight Plan Processing System, i.e. the Network Operations System in charge of receiving and processing the GAT IFR flight plan data and associated update messages for the area covered by the participating States. It subsequently distributes these messages in a format, which can be received and processed automatically by ATC FPPS and EUROCONTROL without further intervention. The IFPS is installed in two geographical sites. |

Level 1 - Strategic ASM is the act of defining and reviewing, as required, the national airspace policy taking into account national and international airspace requirements.

Level 2 - Pre-Tactical ASM is the act of conducting operational management within the framework of pre-determined existing ATM structure and procedures defined in Level 1 and of reaching specific agreement between civil and military authorities involved.

Level 3 - Tactical ASM is the act, on the day of operation, of activating, de-
activating or real-time reallocating of airspace allocated in Level 2 and of solving specific airspace problems and/or of individual OAT/GAT traffic situations in real-time between civil and military ATS units and/or controllers, as appropriate. This co-ordination can take place either in active or passive mode with or without action by the controller.

MOD
means Ministry of Defence.

MOT
means Ministry of Transport.

NM
means Network Manager nominated by the European Commission (i.e. EUROCONTROL).

NMOC
EUROCONTROL Sub-Division being the operational component of the Network Management Directorate, established in accordance with the ICAO Centralised ATFCM Organisation to provide the ATFCM Service, on behalf of the participant States, in a specified part of the EUR Region. The NMOC comprises among others the Network Management Cell (NMC) and the Integrated Initial Flight Plan Processing System (IFPS). For ASM purposes, the NMOC is also entrusted with the Centralised Airspace Data Function (CADF).

NOP Portal
means the EUROCONTROL Network Operations Portal.

NOTAM
means Notice to Airmen, i.e. a notice distributed by means of telecommunication containing information concerning the establishment, condition or change in any aeronautical facility, service, procedure or hazard, the timely knowledge of which is essential to personnel concerned with flight operations.

OAT/GAT
means Operational Air Traffic / General Air Traffic.

P
means Prohibited Area.

RAD
means Route Availability Document.

R
means Restricted Area, i.e. an airspace of defined dimensions, above the land areas or territorial waters of a State, within which the flight of aircraft is restricted in accordance with specific conditions.

In the context of the FUA Concept, some Rs are subject to management and allocation at Level 2 are established at Level 1 as “AMC-manageable areas” and identified as such in AIP.

SUP
means Supplement.

TAA
means Temporary Airspace Allocation Process, i.e. a process consisting in the allocation process of airspace of defined dimensions assigned for the temporary reservation (TRA/TSA) or restriction (D/R) and identified more generally as an "AMC-manageable" area. (See EUROCONTROL MANUAL FOR AIRSPACE PLANNING Vol.2 - Section 3).

TRA
means Temporary Reserved Area, i.e. a defined volume of airspace normally under the jurisdiction of one aviation authority and temporarily reserved, by common agreement, for the specific use by another aviation authority and through which other traffic may be allowed to transit, under ATC clearance.

TSA
means Temporary Segregated Area, i.e. a defined volume of airspace normally under the jurisdiction of one aviation authority and temporarily segregated, by common agreement, for the exclusive use by another aviation authority and through which other traffic will not be allowed to transit.
In the context of the FUA Concept, all TRAs and TSAs are airspace reservations subject to management and allocation at Level 2.

<table>
<thead>
<tr>
<th>UTC</th>
<th>means Universal Time Co-ordinated.</th>
</tr>
</thead>
<tbody>
<tr>
<td>UUP</td>
<td>means Updated Airspace Use Plan.</td>
</tr>
</tbody>
</table>
B.1. Action by CADF

B.1.1 AMC OPS are out for less than one (1) day or Network Operations Systems out less than two (2) hours
When the unavailability of the CACD and CIAM or any ASM tool authorised to provide AUP via B2B does not impact the AIRAC CACD Database preparation (static data) but only the dynamic updates of CACD and EAUP preparation/distribution, the following contingency procedures will be applied (these procedures refer only to the publication of AUP at D-1 and no UUP Publication is expected during the application of contingency procedures):

a) CADF will send an AIM or inform stakeholders by any means of communication available to create awareness on the contingency situation.

b) If return to normal operations occurs before 1400 UTC (1300 UTC Summer) there will only be minor impact on EAUP publication. A small delay may be expected for EAUP publication. AMCs will prepare/validate AUP.

c) If return to normal operations occurs after 1400 UTC (1300 UTC Summer) and not later than 1900 UTC, there will only be minor impact on EAUP publication. A delay will be expected for EAUP publication. AMCs will prepare/validate AUP.

In cases where the AMC will not remain open between 1400 UTC and 1900 UTC, the AMC should provide a hardcopy (or file in ACA format) of AUP to CADF before closing, for CADF to be able to use that information in the case the systems return to normal.

As soon as possible, CADF will implement either the received AUP, the AUP hardcopy (or file in ACA format), or the AMC-AUP contingency template if applicable. If none of those items is available, CADF will produce a NIL AUP.

If the “out of operations” situation still persists, CADF will send out an AIM to inform that the EAUP publication will be delayed.

d) If the “out of operations” situation still exists for CACD and CIAM after 1900 UTC, CADF will send an AIM and if necessary, inform stakeholders by any means of communication available to indicate that no EAUP will be published.

e) If only CIAM is unserviceable but CACD is available, then the information received (from hardcopy (or file in ACA format), NOTAM or AMC-AUP contingency template) on unavailable routes will be implemented manually in the CACD Database for IFPS validation purposes, and that will be indicated by AIM.

f) If, for any reason, there is a discrepancy (one or more routes) between the AUP and national AIS publication and no contact at all with the AMC (or the backup facility, or FMP) the following actions will be taken by CADF:

1) Involved CDR2 routes will be taken out of the AUP (and will remain as published in the AIP);

2) Routes unavailability will be implemented in accordance with national AIS publication.
B.1.2 Network Operations Systems out more than two (2) hours

a) Depending on the decision of Director NM, the NM Disaster Recovery Plan can be activated;

b) In case of no EAUP publication for at least two (2) days, AIMs will be sent out as soon as possible.

B.1.3 CACD is not updating IFPS with EAUP/EUUP information:

a) CADF will receive an alerting message from CSO about the failure of CACD to pass EAUP/EUUP information to IFPS for validation of FPL\(^{31}\);

b) CADF Supervisor will advise the Operations Manager (OM) providing hardcopy of the CDR1/ATS routes being not available and/or of the areas activated and subject to FUA/EU restrictions;

c) OM will instruct Flow Management Positions to introduce zero rate on the CDR1/ATS routes not available as well as on those areas subject to FUA/EU restrictions;

d) CADF will inform AMCs of the situation and actions executed. AMCs will inform local FMPs/Supervisors of the situation (risk of potential flights accepted on);

e) FMPs/Supervisors will evaluate the need to ask for regulations;

f) AIM will be sent out as soon as possible.

B.2 Action by AMC as from 1400 UTC (1300 UTC Summer)

In the ASM-NM agreements, detailed local AMC contingency procedures will be added together with the AMC-AUP contingency template (when required).

The content of the AMC-AUP contingency template is under the full responsibility of the AMC. The AMC shall notify CADF about any changes to the AMC-AUP contingency template and provide an updated file of the AMC-AUP contingency template in ACA format.

B.2.1 When the AMC can prepare/validate AUP via CIAM/ASM local tools but CADF cannot process the AUPs in READY status, the following procedures shall be applied:

a) the AMC provides a “READY” AUP hardcopy to CADF via email or fax (or AUP file in ACA format);

b) CADF implements hardcopy (or file in ACA format) manually in NM systems.

B.2.2 When the CIAM/ASM local tools are not available for AMCs but communication with CADF is possible and CIAM is available for CADF, the following procedures shall be applied (valid also in case of unavailability of B2B service):

a) The AMC will provide an AUP hardcopy to CADF via email or fax (or file in ACA format) or will request CADF to implement the AMC-AUP contingency template (AMC-NM agreement and file in ACA format);

\(^{31}\) Technical capability not yet available
b) If none of the above exists (hardcopy/template), the AMC will inform CADF via email in case a NOTAM has been issued with CDR1/ATS routes not available for flight planning. CADF will create an AUP with the NOTAM information on behalf of the AMC;

c) If only telephone is available, the AMC will request CADF to implement the AMC-AUP contingency template (ASM-NM agreement and file in ACA format) or the information published by NOTAM about the non-availability of CDR1/ATS routes. CADF will then create an AUP on behalf of AMC;

d) If no AMC-AUP contingency template exists and no NOTAM was published, CADF will create a NIL AUP on behalf of the AMC.

B.2.3. In case of AMC outage:

a) The AMC will decide/contact the alternate AMC facility to take over all AMC tasks;

b) If no alternate AMC facility exists, CADF will implement the AMC-AUP contingency template (ASM-NM agreement and file in ACA format) or CADF will create a NIL AUP on behalf of the AMC;

Note: The UUP “release” procedure is to be considered as non-blocking and does therefore not require contingency procedures.

However, any notification received from FMP or by NOTAM about non-availability of CDR1/ATS routes (UUP format or NOTAM via email/fax as well as information of published NOTAM via telephone) will be used by CADF to create a UUP on behalf of the AMC.
Appendix 1 to Annex B

Specific National Measures
This page intentionally left blank
Annex 12

ASM System Support

- Baseline Operational Requirements

Effective:
1. INTRODUCTION

1.1. Scope
The scope of this document is limited to the operational requirements, organised as follows:

- General operational requirements.
- Baseline operational requirements for the ASM/ATFCM process:
 - collection of airspace structures' reservations requests;
 - airspace structures' reservations requests impact assessment at local/FAB and network level;
 - airspace allocation data distribution;
 - notification of airspace data information:
 - update data environment;
 - notification process.
- Operational requirements for ASM performance monitoring.

The document does not cover hardware requirements. It does not aim to determine networks, conceptual and physical links. In the ISO/OSI model it is limited to the application layer.

ASM/ATFCM-ATC systems interoperability for ATC tactical operations (e.g. tactical crossing of areas) are out of the scope of this Annex. Improvements derived by ASM/ATFCM developments at tactical level will be addressed in the review of ADEX-P standard.

The operational requirements will be used by operational and technical experts to identify the technical specifications to develop and implement tools required. These technical specifications are not covered by this Annex.

Policies and procedures including legal, physical and technical controls involved in information risk management processes (e.g. cyber-security risk assessments; business continuity management) are out of the scope of this document.

NM data management and system-to-system interoperability are out of the scope of this Annex.

1.2. Purpose
The purpose of this Annex is to describe the operational requirements for the system support required for the implementation of ASM/ATFCM processes and procedures as well as ASM performance monitoring activities, as described in the “ERNIP Part 3 - ASM Handbook”.

This Annex is addressed to ATM managers and operational and system experts:

- Managers should be able to decide on the selection and development of certain support systems capabilities;
- Operational experts should be able to understand the operational requirements for system support and assist system experts in the design and development tasks.
1.3. Structure of the document

The Annex consists of three sections:

- **Section 1 “Introduction”** defines the context, scope and purpose of the document and provides reference information.

- **Section 2 “Overview of system support to airspace management”** is addressed to operational and technical ATM managers. This section:
 - provides a general overview of the operational requirements for system support to airspace management;
 - presents the operational concept for system support;
 - describes the baseline processes.

 This section updates the information in the chapter “Operational concept for system support” in the light of current developments of the ASM/ATFCM CONOPS providing information to managers to:
 - understand the system support operational requirements;
 - decide on the relevance of these operational requirements;
 - plan and budget related systems developments.

- **Section 3 “Baseline requirements”** is addressed to operational and system experts. It is intended to be a baseline for the development of more detailed operational requirements and system specifications. It will be useful for the development of information and training programs for technical and operational staff.

 This section is broken down in specific subsections covering the different phases of the ASM/ATFCM process, including ASM performance monitoring activities, in order to better understand systems support required for each phase as well as to better clarify which stakeholders are involved. It also includes a set of generic requirements aiming at highlighting the compliance of system functionalities with regulatory requirements.

 Here is the list of subsections identified:
 - Regulatory requirements
 - Planning phase requirements
 - Local/FAB assessment requirements
 - Airspace data transmission requirements
 - Network assessment requirements
 - Data repositories update requirements
 - User notification requirements
 - ASM performance monitoring requirements

In addition, the following three appendixes complete the Annex:

- **Appendix A** provides the list of reference documents;
- **Appendix B** contains the table of definitions;
- **Appendix C** contains the table of abbreviations.
1.4. Requirements characterisation

The operational requirements described in this Annex are compliant with the following keyword conventions:

- Requirements using the operative verb "SHALL" are baseline requirements;
- Requirements using the operative verb "SHOULD" are recommended requirements;
- Requirements using the operative verb "MAY" are options;
- Requirements using the operative verb "WILL" represent a statement of intent by any partner to implement a requirement.

The requirements are individually referenced by an identifier based on the following structure:

\[
\text{SSA-[Fn]-[nnn]}
\]

where:

- SSA stands for System Support ASM
- [Fn] is a 2-5 characters code identifying the operational procedure or category to which the requirement applies (e.g. PL - Planning);
- [nnn] is a numeric identifier, for a sequence of requirement with the same [Fn] identifier;

Each requirement is also followed by a system functional allocation:

- **Local system**: any systems used by external stakeholders exchanging data concerning the ASM/ATFCM processes.
- **NM system**: any systems used by the Network Manager.

Requirements may be followed by a free text note or example to give additional explanations or supplementary information.
2. OVERVIEW OF SYSTEM SUPPORT TO AIRSPACE MANAGEMENT

This section is primarily addressed to decision-makers and planners in the field of ATM. However, it can also be read by experts as an introduction to the operational requirements described in Section 3 "Baseline requirements".

2.1. Operational concept for system support

The European Commission Regulation (EC) No 2150/2005 of 23 December 2005 [2] lays down common rules for the flexible use of the airspace. It reinforces and harmonises the application, within the Single European Sky, of the concept of the flexible use of airspace in order to facilitate airspace management and air traffic management within the limits of the common transport policy. In particular, this Regulation sets out rules to ensure better cooperation between civil and military entities responsible for air traffic management that operate in the airspace under the responsibility of Member States.

The Airspace Management (ASM) Handbook specifies the general ASM functions needed to apply and fully exploit the Concept of the Flexible Use of Airspace.

The ASM process addresses different activities:

- collection of long term airspace planning data, also refer to as strategic, ASM Level 1, data;
- negotiation and consolidation of the airspace planning/reservation data;
- distribution of the airspace allocation plan for the notification to the users;
- tactical activation and deactivation of the airspace structures.

These activities involve entities and organisations, which vary per country, depending on the way the FUA concept is implemented. However, the final product as a result of the planning activities and relevant to the aviation community is the daily airspace use plan and the updates thereof (AUP/UUPs)36.

Today, the AUP/UUPs are the output of a local civil - military airspace coordination process based on local/national procedures, rules and agreements in place. The production and sharing of the AUP/UUPs follow the agreed procedures described in the ASM Handbook. The Network Manager collects the national AUP/UUPs and produces the European EAUP/EUUPs. The EAUP/EUUPs are the common harmonised format to share on network level the planned and consolidated information with regard to airspace allocation.

At FUA Level 3, the tactical activation and de-activation of the airspace structures is performed by the responsible entities and follows the latest airspace allocation plan. This does not exclude deviations from the plan where they are agreed.

ASM support systems shall support the Deployment Baseline Operational Improvement steps identified in the SESAR Master Plan relevant to airspace management, in compliance with standard data formats and protocols agreed on regional (pan-European) level, in order to ensure systems seamless interoperability and relevant regional (pan-European) databases synchronisation.

The operational requirements for system support to the ASM improvement Initiative can be divided in three macro-categories:

1. Regulatory requirements derived from the relevant regulatory provisions and based on existing best practices.

36 The evolution of real time data management could introduce modification in the means of notification, according to SESAR Network Operations concept developments [8].
2. Support to ASM/ATFCM management process, aiming at improving the effectiveness of the entire planning process, including analysis of the requests in order to identify the best options to satisfy civil/military requests.

3. Support to users notification process, aiming at ensuring a timely effective distribution of updated airspace status to the users in order to provide information for FPL operations.

Figure 1 describes the information/messages flows among different systems components supporting the ASM/ATFCM process.

![Figure 1](image)

2.1.1. Concept elements in a FAB environment

In a FAB environment ASM Support Systems shall facilitate the seamless application of the ASM/FUA processes at FAB level, including the coordination of CBOs within CBAs. The collaboration between local ASM Support Systems should enable the optimization of airspace allocation within FABs, thus ensuring safety, providing more capacity for civil traffic while maintaining the military mission effectiveness.

Depending on the ASM Support Systems currently in use or planned to be developed in the countries within a FAB, different system architectures are possible. E.g. it could be that one system is used by each of the FAB members or FAB members are using different systems. It is also possible to have a FAB where all members use a single ASM Support System and the airspace management is performed on FAB level. To this end, mechanisms and functionalities supporting the negotiation and the coordination of the airspace allocation at FAB level shall be available.

37 This figure will be reviewed according to the implementation of relevant Centralised Services (i.e. CS4 and CS5).
While the use of a common or a single ASM Support System could ease the exchange of ASM data among FAB members, the use of different systems requires functionalities on the systems that support exchange of ASM data among them. These functionalities shall use the standard data formats and protocols agreed on regional (pan-European) level for data exchange.

Within a FAB, the ASM Support System of one state interfacing with the other states’ ASM Support Systems shall present an overview of the planning and airspace structures status, covering pre-tactical and tactical phases, i.e. the ASM actors of one state, subject to given privileges, shall be able to follow airspace structures status managed by the ASM Support Systems of other FAB members. Moreover, the ASM actors shall be able to reserve and coordinate via the HMI of their own system, airspace structures that are subject to CBO (e.g. CBA) and managed by the other states’ ASM Support Systems.

The functionalities of the ASM systems interfacing in a FAB environment shall support a CDM process, involving all parties concerned and allowing transparent and informed decision making. These functionalities shall include at least options for exchanging airspace allocation proposals.

2.2. Baseline process

The system support required for the ASM/ATFCM processes includes the following activities, starting with the definition of the airspace structures data, the collection of airspace requests, until the final notification to the users:

- **Definition of airspace structures:**
 - The responsible authorities share with the NM the definitions of the national airspace structures, called "Static data".
 - Ensure consistency between the local and NM airspace structures definitions.

- **Strategic/Long term airspace planning:**
 - Civil and Military authorities draft and share the planning of major exercises and events with each other and the Network Manager.
 - Civil and Military authorities continuously update their strategic planning.
 - NM collects and includes the local plans into the NOP.
 - NM negotiates, as required, the local plans to ensure consistency at Pan-European level.

- **Pre-tactical and tactical airspace planning:**
 - Airspace users request airspace structures in line with missions' requirements.
 - Airspace users link, if require, the airspace structures requests with the relevant strategic planning.
 - Military airspace requests are de-conflicted within the military organisation and shared with the national AMC.
 - Civil requests are shared with national AMCs.
 - Intent AUPs and UUPs are used locally to collect the requests received and first result of local/FAB impact assessment.
 - AMCs negotiate the national airspace allocation plan (draft AUP) and its updates (draft UUP) with the relevant stakeholders (e.g. adjacent AMCs, NM).
 - AMCs share the final daily airspace allocation plan (AUP) and its updates (UUPs) with the NM.
NM publishes the daily airspace allocation plan (EAUP) and its updates (EUUP). AUPs ready are produced, as results of the coordination, daily at a pre-defined time from national Airspace Management Cells to the NM, ATC Units involved and to Approved Agencies/Squadrons.

UUPs are produced from national Airspace Management Cells to the NM, ATC Units involved and to Approved Agencies/Squadrons. At this stage of the development of the ASM/ATFCM process, AUPs/UUPs are issued according to the procedure described in the “ERNIP Part 3 - ASM Handbook”, section 4.8.

Tactically-managed airspace changes do not imply the update of the NM ENV database, therefore such information are not available for flight planning purposes38.

Due to the heterogeneity of airspace users in terms of capability to get and process airspace status information, different systems are used or planned to be developed in order to disclose airspace information through messages, which can be broadcasted or customised and sent to specific users by means of a publish/subscribe mechanism.

The notification of the users and the support of the FPL management are done through EAUP/EUUP.

EAUP/EUUPS are sent daily via electronic Airspace Management Information (eAMI)39, by means of a B2B connection to the subscribed AOs, to all ACCs/FMPs concerned and to all AMCs. Alternatively, the EAUP/EUUP can be publicly accessed on the NOP portal.

- **Execution phase:**
 - The responsible airspace manager collects, coordinates and monitors any update to RSA information.
 - The responsible airspace manager gives pre-notice to the counterpart airspace manager(s) for activation of requested airspace structures.
 - The responsible airspace manager activates the requested airspace structures.
 - The counterpart airspace manager acknowledges the requested airspace structures activation.
 - The responsible airspace manager de-activates the requested airspace structures.
 - The counterpart airspace manager(s) acknowledges the de-activation.
 - The responsible airspace manager amends the requested airspace structures as needed.

- **Post-ops analysis:**
 - ASM data are collected for analysis.
 - ASM data are shared for performance measuring purposes.

38 To be reconsidered according to the evolution of real time airspace data management.
39 The eAMI is an electronic message in AIXM format containing much more information, de facto providing the overall airspace status valid at the time of publication.
2.2.1. FAB process

The following actions, constituting the FAB process, shall be conducted in conjunction with the ones listed in the previous baseline process.

- **Strategic/Long term airspace planning:**
 - Civil and Military authorities draft, share and negotiate if relevant the planning of major exercises and events with the FAB members.
 - Civil and Military authorities continuously update their strategic planning.

- **Pre-tactical and tactical airspace planning:**
 - The airspace users request airspace subject to CBO in line with their missions' requirements.
 - The airspace users link, if require, the airspace structures with the relevant strategic planning.
 - The military airspace requests are de-conflicted within the military organisation of the FAB member hosting the Lead AMC and shared with the other FAB members, if relevant.
 - The civil requests are shared with the Lead/FAB AMC.
 - Intent AUPs and UUPs are used at FAB level to collect the requests received and the first results of FAB assessment.
 - The airspace structures are approved in line with the FAB Level 2 approval process.
 - The Lead/FAB AMC negotiate the national airspace allocation plan with the aim to accommodate civil and military demands.
 - Draft AUPs are used to share planned requests and support coordination at FAB level.
 - The Lead/FAB AMC shares the final daily airspace allocation plan (AUP) with the NM.
 - The airspace users share updates to their airspace requests with the Lead/FAB AMC.
 - Draft UUPs are used to share planned requests and support coordination at FAB level.
 - The Lead/FAB AMC updates the final airspace allocation plan (UUP).
 - NM publishes the daily airspace allocation plan (EAUP) and its updates (EUUP).

- **Execution phase:**
 - The responsible airspace manager collects, coordinates and monitors any updates to RSA information.
 - The responsible airspace manager gives pre-notice to the counterpart airspace manager(s) for activation of the area subject to CBO (e.g. in CBAs).
 - The responsible airspace manager activates the area subject to CBO.
 - The counterpart airspace manager acknowledges the area activation.
 - The responsible airspace manager de-activates the area subject to CBO.
 - The counterpart airspace manager(s) acknowledges the de-activation.
 - The responsible airspace manager amends the area as required.
• **Post-ops analysis:**
 - ASM data relevant to FAB is collected for analysis.
 - ASM data relevant to FAB is shared for performance measuring purpose.

3. BASELINE REQUIREMENTS

The requirements contained in this section are divided in macro-categories covering the different phases of the ASM/ATFCM process. They are introduced by generic regulatory and operational requirements providing the frame supporting any system development.

3.1. Regulatory requirements

<table>
<thead>
<tr>
<th>Req. ID</th>
<th>Description</th>
<th>Local System</th>
<th>NM System</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSA-REG-001</td>
<td>The relevant ASM/ATFCM stakeholders SHALL develop ASM Support Systems in compliance with the requirements stemming from the Commission Regulation (EC) No 482/2008 of 30 May 2008, establishing a software safety assurance system to be implemented by air navigation service providers, in particular Annex I and II.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSA-REG-003</td>
<td>The relevant ASM/ATFCM stakeholders SHALL ensure ASM Support Systems provide the NM with the required data specified in commission Regulation (EU) No 677/2011, in particular Annex V, §8 and in commission Regulation (EU) No 255/2010, in particular Article 6, 5 (a) and (h).</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
3.2. Operational requirements

3.2.1. Generic operational requirements

<table>
<thead>
<tr>
<th>Req. ID</th>
<th>Description</th>
<th>Local System</th>
<th>NM System</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSA-GEN-001</td>
<td>ASM/ATFCM stakeholders SHALL be able to access the ASM system at any time, through authentication and authorisation mechanisms.</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SSA-GEN-002</td>
<td>ASM/ATFCM stakeholders SHALL be able to configure ASM support systems in order to adapt to changes to the ASM organisation and procedures.</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SSA-GEN-003</td>
<td>ASM/ATFCM stakeholders SHALL be able to seamlessly implement ASM/FUA processes by means of support systems for the airspace data collection, booking, data sharing, negotiation, collaboration, allocation, activation and deactivation of airspace structures.</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SSA-GEN-004</td>
<td>ASM/ATFCM stakeholders SHALL be able to manage any airspace structures and conditions (e.g. FUA restrictions) subject to ASM/ATFCM process.</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SSA-GEN-005</td>
<td>ASM/ATFCM stakeholders SHALL be able to collect, process and record ASM/FUA data for performance measurement purposes.</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SSA-GEN-006</td>
<td>ASM/ATFCM stakeholders SHALL be able to exchange airspace status information (including real time data), ensuring a common situational awareness at all times.</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SSA-GEN-007</td>
<td>ASM/ATFCM stakeholders SHALL be able to archive any recorded ASM/FUA data.</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SSA-GEN-008</td>
<td>ASM/ATFCM stakeholders SHALL be able to work according to ICAO standard geodetic reference system.</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SSA-GEN-009</td>
<td>ASM/ATFCM stakeholders SHALL be able to work according to ICAO standard units of measurement.</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SSA-GEN-010</td>
<td>ASM/ATFCM stakeholders SHALL be able to work according to ICAO standard temporal reference system.</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Req. ID</td>
<td>Description</td>
<td>Local System</td>
<td>NM System</td>
<td>Remarks</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>--------------</td>
<td>-----------</td>
<td>---------</td>
</tr>
<tr>
<td>SSA-GEN-011</td>
<td>ASM/ATFCM stakeholders SHALL be prompted with error/warning messages in case of exceptions (e.g. business rules violation; process deviation).</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SSA-GEN-012</td>
<td>ASM/ATFCM stakeholders SHALL be able to monitor systems operational status.</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SSA-GEN-013</td>
<td>ASM/ATFCM stakeholders SHALL be at any time able to unambiguously assign an airspace structure to only one ASM Authority.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSA-GEN-014</td>
<td>ASM/ATFCM as well as AO/CFSP stakeholders SHALL be able to support the different phases of ASM/ATFCM CDM processes (as described in ERNIP Part 3 - ASM Handbook) by exchanging and processing ASM/ATFCM data.</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
3.2.2. ASM reference database

3.2.2.1. Background

A centralised reference database, up-to-date with the latest information available\(^{40}\), will ensure an effective ASM/ATFCM process including a prompt notification to airspace users for FPL purposes.

3.2.2.2. Requirements

<table>
<thead>
<tr>
<th>Req. ID</th>
<th>Description</th>
<th>Local System</th>
<th>NM System</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSA-DB-001</td>
<td>AIS units SHALL be able to update AIS data in the EAD.</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SSA-DB-002</td>
<td>EAD service provider SHALL be able to update AIS data provided by AIS Units in the NM ENV database.</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SSA-DB-003</td>
<td>EAD service provider SHALL be able to update AIS data in the NM ENV database on behalf of those States who have not yet migrated to EAD.</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SSA-DB-005</td>
<td>AIS units SHALL be able to perform data integrity checks to validate the AIS static data.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSA-DB-006</td>
<td>ASM/ATFCM stakeholders SHALL be able to define ad-hoc areas in both local and NM systems.</td>
<td>X</td>
<td>X</td>
<td>Online creation of airspace structures.</td>
</tr>
<tr>
<td>SSA-DB-007</td>
<td>ASM/ATFCM stakeholders SHALL be able to visualise 3D maps representing airspace data at a given effective date.</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SSA-DB-008</td>
<td>ASM/ATFCM stakeholders SHOULD be able to define business rules to be associated to airspace structures.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSA-DB-009</td>
<td>ASM/ATFCM stakeholders SHALL be able to visualise pre-defined airspace scenarios in both local and NM systems.</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SSA-DB-010</td>
<td>ASM/ATFCM stakeholders SHALL be able to manage complex FUA restrictions, composed by different sub-restrictions.</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SSA-DB-011</td>
<td>ASM/ATFCM stakeholders SHALL be able to express airspace availability and activation referring to either Sunrise or Sunset.</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

\(^{40}\) These requirements will be reconsidered according to Centralised Services developments.
<table>
<thead>
<tr>
<th>Req. ID</th>
<th>Description</th>
<th>Local System</th>
<th>NM System</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSA-DB-012</td>
<td>ASM/ATFCM stakeholders SHALL be able to manage the partial/total overlap of areas/FBZs reservations.</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SSA-DB-013</td>
<td>ASM/ATFCM stakeholders SHALL be able to retrieve/manage pre-defined airspace scenarios using a common ASM Scenario Repository.</td>
<td>X</td>
<td>X</td>
<td>Airspace configurations management</td>
</tr>
<tr>
<td>SSA-DB-014</td>
<td>ASM/ATFCM stakeholders SHALL be able to express airspace availability and activation referring to different UOM</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.2.3. Planning

3.2.3.1. Background

At this stage of the ASM/ATFCM process the local/regional ASM units collect the airspace requests from the different stakeholders (e.g. military squadrons, Approved Agencies, FMPs). Consequently, it shall be possible to collect daily requests, as well as to utilise data available from requests planned months or days before the Day of Operations.

The process will be paperless, with the utilization of electronic standard formats, and will allow the stakeholders to manage both planning and real time airspace information.

The use of the Aeronautical Information Exchange Model (AIXM) for collecting airspace/route requests facilitates their analysis and allows a graphical presentation of conflicting requests possibly customised according to specific AMC working arrangements.

3.2.3.2. Requirements

<table>
<thead>
<tr>
<th>Req. ID</th>
<th>Description</th>
<th>Local System</th>
<th>NM System</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSA-PL-001</td>
<td>AMCs SHOULD be able to retrieve by automated means information on the planned utilisation of airspace reservation (TRA, TSA, CBA) (e.g. 7 days in advance).</td>
<td>X</td>
<td></td>
<td>Rolling AUP.</td>
</tr>
<tr>
<td>SSA-PL-002</td>
<td>Daily submission of airspace reservation and conditional route requests to AMCs by approved agencies SHOULD be made through a common interface using a data exchange format supported by the NM ENV database.</td>
<td>X</td>
<td>X</td>
<td>Publication of eAMI via B2B publish/subscribe.</td>
</tr>
<tr>
<td>SSA-PL-003</td>
<td>AMCs SHALL be able to use all areas published and based on local agreements for planning purposes.</td>
<td>X</td>
<td></td>
<td>RSA definition as AMA/NAM only.</td>
</tr>
<tr>
<td>SSA-PL-004</td>
<td>Authorised users/units SHOULD be able to book an ad-hoc area, according to common standards and coordination procedures.</td>
<td>X</td>
<td></td>
<td>Dynamic airspace allocation at levels 2 and 3.</td>
</tr>
<tr>
<td>SSA-PL-005</td>
<td>authorised users/units SHALL have an assigned restricted access for planning purposes.</td>
<td>X</td>
<td></td>
<td>User authentication.</td>
</tr>
<tr>
<td>SSA-PL-006</td>
<td>Authorised users/units SHALL be able to create/modify/delete area reservations within the lateral and vertical limits of an airspace structure (or a combination of).</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Req. ID</td>
<td>Description</td>
<td>Local System</td>
<td>NM System</td>
<td>Remarks</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>--------------</td>
<td>-----------</td>
<td>--</td>
</tr>
</tbody>
</table>
| SSA-PL-007 | Authorised users/units SHALL be able to create/modify/delete the following minimum set data for planning request into the local system:
- Reference number;
- Start/end date and time;
- 3D airspace block (airspace ID, vertical extension);
- Responsible unit;
- Requestor (PoC). | X | | |
| SSA-PL-008 | Authorised users/units SHOULD be able to enter/modify/delete additional static and dynamic data for planning request into the local system:
- ADEP;
- ADES;
- Aircraft type;
- Number of aircraft;
- Priority;
- Call sign(s);
- Mission ID;
- Link to other missions;
- Controlling Units;
- Remarks. | X | | FBZ and FUA/EU restrictions activation. |
| SSA-PL-009 | Authorised users/units, within their area of responsibility, MAY be able to create/modify/delete alternative options into the local system, in terms of:
- Time shifting;
- Different airspace blocks with or without FBZ/FUA restrictions;
- Different FUA restrictions for the requested areas;
- Alternate areas or feasible flying distance from the A/B and requested shape in order to identify alternate areas. | X | | |
<table>
<thead>
<tr>
<th>Req. ID</th>
<th>Description</th>
<th>Local System</th>
<th>NM System</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSA-PL-010</td>
<td>Authorised users/units SHOULD be able to save/open/update edition/delete operational documents (unstructured information).</td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSA-PL-011</td>
<td>Authorised users/units SHALL be able to set up/visualise/modify/delete operational procedures (work flow structured information).</td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSA-PL-012</td>
<td>Authorised users/units SHALL be able to display the name of the Authority responsible for issuing documents and procedures.</td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSA-PL-013</td>
<td>Authorised users/units SHALL be able to practise a version control on any records (both documents and procedures) under their responsibility.</td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSA-PL-014</td>
<td>Authorised users/units SHALL be able to set up an effective date for any records (both documents and procedures) under their responsibility.</td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSA-PL-015</td>
<td>Authorised users/units SHALL be able to revert back to older versions of any records (both documents and procedures) under their responsibility.</td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSA-PL-016</td>
<td>Authorised users/units MAY be able to enter an airspace request (airspace/route booking, amendment, cancellation) into the local system, on behalf of other users/units, following relevant FAB rules if applicable.</td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSA-PL-017</td>
<td>Authorised users/units SHALL be prompted with an acknowledgement message once an airspace request (airspace/route booking, amendment, cancellation) is successfully entered into the local system.</td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSA-PL-018</td>
<td>Authorised users/units SHALL be able to retrieve a log of all the recorded airspace requests (airspace/route booking, amendment, cancellation) entered into the local system.</td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSA-PL-019</td>
<td>Authorised users/units MAY be able to visualise both the airspace requests (airspace/route booking, amendment, cancellation) entered into the local system either by themselves or other users/units.</td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Req. ID</td>
<td>Description</td>
<td>Local System</td>
<td>NM System</td>
<td>Remarks</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>--------------</td>
<td>-----------</td>
<td>---------------</td>
</tr>
<tr>
<td>SSA-PL-020</td>
<td>Authorised users/units SHALL be able to delete a request from the local system.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSA-PL-021</td>
<td>Authorised users/units SHALL be able to visualise any modifications occurred to any airspace requests.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSA-PL-022</td>
<td>Authorised users/units SHALL be prompted with error messages in case of validation errors and database inconsistencies, related to airspace requests under their responsibility.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSA-PL-023</td>
<td>Authorised users/units SHALL be prompted with warning messages in case of conflicts detected related to airspace requests under their responsibility.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSA-PL-024</td>
<td>Authorised users/units SHALL be able to visualise 4D maps (3D representation + time) of any airspace requests and associated events.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSA-PL-025</td>
<td>Authorised users/units SHALL be able to receive feedbacks on the evolution of airspace requests.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSA-PL-026</td>
<td>Authorised users/units SHALL be able to create/visualise/accept/reject change proposals to airspace requests on their own responsibility.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSA-PL-027</td>
<td>Authorised users/units SHALL be able to set up/join collaborative workspaces (e.g. web conferencing, file sharing).</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSA-PL-028</td>
<td>Authorised users/units SHALL be able to generate NOTAM proposals associated to an airspace request to be published when required.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSA-PL-029</td>
<td>AMCs SHOULD be able to retrieve by automated means information on the foreseen establishment of specific airspaces required for major military exercises (e.g. 3 months in advance).</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSA-PL-030</td>
<td>AMCs SHALL be able to publish AUP information from D-6 to D-2 whenever available.</td>
<td>X</td>
<td>X</td>
<td>Rolling AUP</td>
</tr>
<tr>
<td>Req. ID</td>
<td>Description</td>
<td>Local System</td>
<td>NM System</td>
<td>Remarks</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>--------------</td>
<td>-----------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>SSA-PL-031</td>
<td>AMCs SHALL be able to activate simultaneously different sub-restrictions.</td>
<td>X</td>
<td>X</td>
<td>Complex FUA Restrictions</td>
</tr>
<tr>
<td>SSA-PL-032</td>
<td>AMCs SHALL be able to make area reservations outside the AIP published times/vertical limits.</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
3.2.4. Local/FAB impact assessment

3.2.4.1. Background

Local/FAB ASM units assess airspace requests, resolving potential conflicts between them and identifying the best combination of routes, sector configurations and areas to meet both civil and military needs. Such combination relies on the knowledge of the traffic demand, either historical or actual, according to the phase of the process. In general, the definition of parameters used by the system will facilitate the process and define the required granularity of the assessment.

The ASM Level 2 CDM process among AMCs, ACCs/FMPs concerned, military agencies and the NM, shall be supported by advanced systems in order to ensure a quick assessment of all the elements; nevertheless, human intervention is always expected, even to override the solutions proposed by the system.

At this stage, the availability of Draft AUP will facilitate the FAB coordination when required to support the assessment.

In addition, teleconferencing/message exchange capabilities shall be provided to support the CDM process, allowing users to set up and join teleconferences, as well as to read and post text messages to conferences.

3.2.4.2. Requirements

<table>
<thead>
<tr>
<th>Req. ID</th>
<th>Description</th>
<th>Local System</th>
<th>NM System</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSA-LOC-001</td>
<td>AMCs involved in cross-border operations SHOULD be able to exchange airspace request information, including:</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• AIS static and dynamic data;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• reservations and missions information;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• alternative operational solutions proposals.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSA-LOC-002</td>
<td>The Lead AMC SHOULD be able to manage airspace requests submitted by approved agencies from a different State.</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SSA-LOC-003</td>
<td>AMCs WILL be able to propose alternative local/FAB airspace allocation options.</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SSA-LOC-004</td>
<td>AMCs WILL be able to perform a local/FAB impact assessment based on what-if analysis of different airspace allocation options, highlighting and solving potential conflicting requests (both spatial and temporal overlaps).</td>
<td>X</td>
<td></td>
<td>Booking de-conflicting.</td>
</tr>
<tr>
<td>SSA-LOC-005</td>
<td>AMCs, ACCs/FMPs concerned, military agencies, SHALL be able to visualise any airspace requests.</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Req. ID</td>
<td>Description</td>
<td>Local System</td>
<td>NM System</td>
<td>Remarks</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>--------------</td>
<td>-----------</td>
<td>---------</td>
</tr>
<tr>
<td>SSA-LOC-006</td>
<td>AMCs SHOULD be able to access documents (e.g. local ASM manual) supporting the assessment process.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSA-LOC-007</td>
<td>AMCs SHALL be able to step through the protocols to determine the optimal usage of the airspace based on all the allocation requests.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSA-LOC-008</td>
<td>AMCs SHALL be able to override any automatic protocol workflow step.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSA-LOC-009</td>
<td>AMCs SHALL be able to retrieve a log of the allocation decisions (including overrides), actions and notes associated with a specific airspace request.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSA-LOC-010</td>
<td>AMCs SHALL be able to process the following data in order to support local/FAB impact assessments:</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Route structures;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Manageable and not manageable Area Structures;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• CDR route status (past, current, proposed and future);</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• AIP data associated with each route;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Area status (past, current, proposed and future);</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• AIP data associated with each area;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• NOTAMs;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Airport Information;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• FUA/EU Restrictions;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• FBZ Activation.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSA-LOC-011</td>
<td>AMCs SHOULD be able to process the following additional data in order to support local/FAB impact assessments:</td>
<td>X X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Pre-defined sector configurations;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Pre-defined airspace scenarios;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• RAD information;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Traffic data;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Pre-defined regulations.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Req. ID</td>
<td>Description</td>
<td>Local System</td>
<td>NM System</td>
<td>Remarks</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>--------------</td>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>SSA-LOC-012</td>
<td>The Lead AMC SHALL have unique access and right of managing assigned cross</td>
<td>X</td>
<td>X</td>
<td>Unique ASM Authority for cross border airspace structures</td>
</tr>
<tr>
<td></td>
<td>borders airspace structures.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSA-LOC-013</td>
<td>AMCs SHALL be able to generate AUP/UUP from the agreed simulated scenario.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.2.5. AUP/UUP Airspace data exchange

3.2.5.1. Background

Based on the result of the local/FAB impact assessment, Draft AUPs/UUPs will be produced to share information and to support additional coordination at network level.

Once the coordination is finalised, Ready AUPs/UUPs will be produced to disseminate airspace planning information to the stakeholders involved.

3.2.5.2. Requirements

<table>
<thead>
<tr>
<th>Req. ID</th>
<th>Description</th>
<th>Local System</th>
<th>NM System</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSA-TR-001</td>
<td>AMCs SHALL be able to generate AUP/UUP messages compliant with the format specified in the ERNIP Part 3 - ASM Handbook.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSA-TR-002</td>
<td>AMCs SHALL be able to export AUP/UUP data.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSA-TR-003</td>
<td>AMCs SHALL be able to promote/demote the AUPs/UUPs status as:</td>
<td>X</td>
<td>X</td>
<td>RSA definition as AMA/NAM only.</td>
</tr>
<tr>
<td></td>
<td>- Intent;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Draft;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Ready;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Released (NM only).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSA-TR-004</td>
<td>AMCs SHALL be able to submit AUP/UUP messages in both Draft and Ready status.</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SSA-TR-005</td>
<td>AMCs SHALL be able to classify areas as:</td>
<td>X</td>
<td>X</td>
<td>RSA definition as AMA/NAM only.</td>
</tr>
<tr>
<td></td>
<td>- AMC Manageable area (AMA);</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Not AMC Manageable area (NAM).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSA-TR-006</td>
<td>NM SHALL be able to promote AUP/UUP messages from status Ready to Released.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSA-TR-007</td>
<td>AMCs SHALL be able to demote UUPs.</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SSA-TR-008</td>
<td>AMCs SHALL be able to populate NIL AUPs.</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SSA-TR-009</td>
<td>AMCs SHALL be able to notify the dynamic Lead AMC responsibilities.</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SSA-TR-010</td>
<td>AMCs/NM SHALL be able to process multiple UUPs simultaneously.</td>
<td>X</td>
<td>X</td>
<td>Initial CDM for network impact assessment in FRA</td>
</tr>
</tbody>
</table>
3.2.6. Network impact assessment

3.2.6.1. Background

Currently, NM should consider Draft AUPs/UUPs when performing the network impact assessment in order to identify possible improvements. Based on the assessment, using system support, alternate airspace allocation proposals could be forwarded back to the concerned units for consideration and final decision.

NM should also be able to consider FPL change proposals submitted by AOs for fine tuning the assessment results.

3.2.6.2. Requirements

<table>
<thead>
<tr>
<th>Req. ID</th>
<th>Description</th>
<th>Local System</th>
<th>NM System</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSA-NET-001</td>
<td>NM SHALL be able to perform what-if analyses in order to support the network impact assessment.</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SSA-NET-002</td>
<td>NM SHOULD be able to retrieve ASM pre-defined scenarios (i.e. combination of sector configurations, routes availability, CDRs and airspace blocks combinations, pre-defined regulations, pre-defined airspace scenarios) for supporting the network impact assessment.</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SSA-NET-003</td>
<td>NM SHOULD be able to retrieve information on alternate airspace allocations, in terms of:</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Time shifting;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Different airspace blocks with or without FBZ;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Alternate areas or feasible flying distances from A/B and requested shape in order to identify alternate areas.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSA-NET-004</td>
<td>NM SHOULD be able to access information of national documents and protocols relevant to support the network impact assessment and the coordination process.</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SSA-NET-005</td>
<td>NM SHALL be able to coordinate alternate airspace allocation proposals with the AMCs concerned.</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Req. ID</td>
<td>Description</td>
<td>Local System</td>
<td>NM System</td>
<td>Remarks</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>--------------</td>
<td>-----------</td>
<td>---</td>
</tr>
</tbody>
</table>
| SSA-NET-006 | NM SHALL be able to retrieve the following data in order to support the network impact assessment, identifying the best solution at regional level:
- Route structures;
- Manageable and not manageable Area Structures;
- CDR route status (past, current, proposed and future);
- AIP data associated with each route;
- Area status (past, current, proposed and future);
- AIP data associated with each area;
- Pre-defined sector configurations;
- Pre-defined airspace scenarios;
- RAD information;
- Pre-defined regulations;
- NOTAMs;
- Airport Information;
- FUA/EU Restrictions;
- FBZ Activation;
- Traffic demand. | | X | Special event or any temporary activation via NOTAM/AIP supplement.
FUA/EU Restrictions.
FBZ Activation. |
3.2.7. Airspace status

3.2.7.1. Background

A common, secure exchange of consolidated airspace status information shall be allowed, guarantying data integrity, which is a major flight safety concern.

Real-time airspace data management process shall be supported, including the activation, deactivation, short-term cancellation or amendments to reservations and reallocation of the airspace structures.

It shall also be possible to visualise and share real-time airspace data among the stakeholders involved, including ATC.

3.2.7.2. Requirements

<table>
<thead>
<tr>
<th>Req. ID</th>
<th>Description</th>
<th>Local System</th>
<th>NM System</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSA-AS-001</td>
<td>ASM/ATFCM stakeholders SHALL be able to exchange airspace status information through a B2B publish/subscribe mechanism.</td>
<td>X</td>
<td>X</td>
<td>Publication of eAMI via B2B publish/subscribe mechanism.</td>
</tr>
<tr>
<td>SSA-AS-003</td>
<td>ASM/ATFCM stakeholders MAY be able to visualise 4D maps (3D representation + time) of the real time status of airspaces.</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SSA-AS-004</td>
<td>Local ASM units MAY be able to exchange real time airspace status data with ATC systems.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSA-AS-005</td>
<td>ASM responsible units SHOULD be able to confirm and acknowledge any changes to the status of an airspace structure (i.e. activation, de-activation, cancellation, amendment).</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSA-AS-006</td>
<td>ASM/ATFCM stakeholders and Airspace Users/CFSPs SHOULD be able to exchange rerouting scenarios associated to relevant real time airspace status information.</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SSA-AS-007</td>
<td>ASM responsible units SHALL be able to introduce any changes to the status of an airspace structure (i.e. activation, de-activation, cancellation, amendment).</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.2.8. Notification to users

3.2.8.1. Background

According to the up-to-date information available in the NM ENV database, appropriate messages are generated to disseminate the information to the users. Such information is made available in electronic format for automated processing.

3.2.8.2. Requirements

<table>
<thead>
<tr>
<th>Req. ID</th>
<th>Description</th>
<th>Local System</th>
<th>NM System</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSA-NU-001</td>
<td>NM SHALL be able to publish consolidated airspace information.</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SSA-NU-002</td>
<td>NM SHALL be able to update the ENV database according to the information contained in the EAUPs/EUUPs.</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SSA-NU-003</td>
<td>ASM/ATFCM stakeholders and Airspace Users/CFSPs SHALL be able to retrieve planned airspace information, as described in the EAUP/EUUP messages via B2B web services.</td>
<td>X</td>
<td>X</td>
<td>Publication of eAMI via B2B publish/subscribe mechanism.</td>
</tr>
<tr>
<td>SSA-NU-004</td>
<td>NM SHALL be able to publish event-based real time airspace status information on the web.</td>
<td></td>
<td>X</td>
<td>NOP Portal</td>
</tr>
<tr>
<td>SSA-NU-005</td>
<td>Local ASM units SHOULD be able to publish event-based real time airspace status information on the web.</td>
<td>X</td>
<td></td>
<td>Local web sites.</td>
</tr>
<tr>
<td>SSA-NU-006</td>
<td>ASM/ATFCM stakeholders and airspace users/CFSPs SHALL be able to compare EAUP/EUUP messages belonging to the same chain, in order to highlight the differences in terms of both routes availability and areas allocation.</td>
<td></td>
<td>X</td>
<td>Graphical display of AUP/UUP information.</td>
</tr>
<tr>
<td>SSA-NU-007</td>
<td>ASM/ATFCM stakeholders and airspace users/CFSPs SHALL be able to visualise FUA/EU restrictions activated via EAUP/EUUP.</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SSA-NU-008</td>
<td>NM SHALL allow the graphical display of EAUP/EUUP data.</td>
<td>X</td>
<td></td>
<td>Graphical display of AUP/UUP information.</td>
</tr>
<tr>
<td>Req. ID</td>
<td>Description</td>
<td>Local System</td>
<td>NM System</td>
<td>Remarks</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>--------------</td>
<td>-----------</td>
<td>---------</td>
</tr>
<tr>
<td>SSA-NU-009</td>
<td>NM SHALL be able to receive a warning in case of missed transmission of EAUP from CACD to IFPS.</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SSA-NU-010</td>
<td>NM SHALL distribute eAMI data via other means in case of B2B failure.</td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
3.2.9. ASM performance monitoring

3.2.9.1. Requirements

<table>
<thead>
<tr>
<th>Req. ID</th>
<th>Description</th>
<th>Local System</th>
<th>NM System</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSA-APM-001</td>
<td>ASM/ATFCM stakeholders SHALL be able to store ASM data (e.g. AUP/UUP messages, traffic data, real time airspace status information, CDM data).</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SSA-APM-002</td>
<td>ASM/ATFCM stakeholders SHALL be able to access stored ASM data (e.g. AUP/UUP messages, traffic data, real time airspace status information, CDM data).</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SSA-APM-003</td>
<td>ASM/ATFCM stakeholders SHALL be able to process ASM data for performance monitoring purposes (e.g. FUA indicators).</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SSA-APM-004</td>
<td>NM SHALL be able to retrieve RRP messages for Post Ops analysis.</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SSA-APM-005</td>
<td>NM SHALL allow authorised users to access ASM monitoring data according to its area of interest.</td>
<td>X</td>
<td></td>
<td>NMIR</td>
</tr>
<tr>
<td>SSA-APM-006</td>
<td>NM SHALL provide a performance monitoring dashboard with different layers of analysis.</td>
<td>X</td>
<td></td>
<td>NMIR</td>
</tr>
<tr>
<td>SSA-APM-007</td>
<td>NM SHALL be able to retrieve FUA/EU Restrictions information for post-ops analysis.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Brief description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[8] SESAR P07.05.04 AFUA OSED Step 1</td>
<td>Definition of the operational services, their environment, scenarios, use cases and requirements, developed within the SESAR Network Operations concept.</td>
</tr>
</tbody>
</table>
DEFINITIONS

List of definitions complementary to the one provided in the ERNIP Part 3 - ASM Handbook.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross Border Airspace</td>
<td>An airspace structure extending across national borders and/or the boundaries of flight information regions.</td>
</tr>
<tr>
<td>Flight Intention</td>
<td>The flight path and associated flight data describing the planned trajectory of a flight to its destination, as updated at any moment.</td>
</tr>
<tr>
<td>Interoperability</td>
<td>A set of functional, technical and operational properties required of the systems and constituents of the European ATM network and of the procedures for its operation, in order to enable its safe, seamless and efficient operation. Interoperability is achieved by making the systems and constituents compliant with the essential requirements.</td>
</tr>
<tr>
<td>Modus Operandi</td>
<td>A combination of areas, routes, permanent and temporary, ATC sectors and flow restrictions to better accommodate airspace requirements and traffic demand minimising penalisations for civil and military traffic.</td>
</tr>
<tr>
<td>Operational Data</td>
<td>Information concerning all phases of flight that are required to take operational decisions by air navigation service providers, airspace users, airport operators and other actors involved.</td>
</tr>
<tr>
<td>Procedures</td>
<td>As used in the context of the interoperability Regulation, means a standard method for either the technical or the operational use of systems, in the context of agreed and validated concepts of operation requiring uniform implementation throughout the European ATM network.</td>
</tr>
<tr>
<td>Route Network</td>
<td>A network of specified routes for channelling the flow of general air traffic as necessary for the provision of ATC services.</td>
</tr>
<tr>
<td>Routing</td>
<td>The chosen itinerary to be followed by an aircraft during its operation.</td>
</tr>
<tr>
<td>Sector</td>
<td>Part of a control area and/or a flight information region/upper region.</td>
</tr>
<tr>
<td>System</td>
<td>The aggregation of airborne and ground based constituents, as well as space-based equipment, that provides support for air navigation services for all phases of flight.</td>
</tr>
<tr>
<td>Users</td>
<td>Civil or military aircraft operating in the air as well as any other parties requiring airspace.</td>
</tr>
</tbody>
</table>
ABBREVIATIONS

List of abbreviations complementary to the one provided in the ERNIP Part 3 - ASM Handbook.

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARR</td>
<td>Arrival</td>
</tr>
<tr>
<td>ARS</td>
<td>Automatic Route Selection</td>
</tr>
<tr>
<td>CACD</td>
<td>Central Airspace and Capacity Database</td>
</tr>
<tr>
<td>CBO</td>
<td>Cross Border Operations</td>
</tr>
<tr>
<td>CDM</td>
<td>Collaborative Decision Making</td>
</tr>
<tr>
<td>CFMU</td>
<td>Central Flow Management Unit</td>
</tr>
<tr>
<td>CFSP</td>
<td>Computerised Flight Plan Service Provider</td>
</tr>
<tr>
<td>CPA</td>
<td>CFMU Portal Application</td>
</tr>
<tr>
<td>CRC</td>
<td>Control and Reporting Centre</td>
</tr>
<tr>
<td>CUA</td>
<td>Common User Access</td>
</tr>
<tr>
<td>DEP</td>
<td>Departure</td>
</tr>
<tr>
<td>EAD</td>
<td>European AIS Database</td>
</tr>
<tr>
<td>EAUP</td>
<td>European AUP</td>
</tr>
<tr>
<td>EC</td>
<td>European Commission</td>
</tr>
<tr>
<td>ENV</td>
<td>Environment</td>
</tr>
<tr>
<td>EU</td>
<td>European Union</td>
</tr>
<tr>
<td>EUUP</td>
<td>European UUP</td>
</tr>
<tr>
<td>FAB</td>
<td>Functional Airspace Block</td>
</tr>
<tr>
<td>ID</td>
<td>Identifier</td>
</tr>
<tr>
<td>ISO</td>
<td>International Standards Organization</td>
</tr>
<tr>
<td>OSED</td>
<td>Operational Service and Environment Definition</td>
</tr>
<tr>
<td>OSI</td>
<td>Open Systems Interconnection</td>
</tr>
<tr>
<td>RTSA</td>
<td>Real Time Status of Airspace</td>
</tr>
</tbody>
</table>
This page intentionally left blank
Contact details

NMD/NSD
razvan.bucuroiu@eurocontrol.int