AeroMACS Briefing / Update

European activities

January 2016

Nikos FISTAS
EUROCONTROL
Agenda

- Why AeroMACS for aviation?
- Stakeholders
- Current Status
- Next Steps
Agenda

- Why AeroMACS for aviation?
 - History – Background
 - Importance of AeroMACS for aviation
 - Alternatives

- Stakeholders

- Current Status

- Next Steps
Future COM Infrastructure: FCI - Multilink

Existing Systems (Voice/VDL2)

Multilink Concept

Airport surface: AeroMACS

General terrestrial: LDACS

Satellite: Oceanic + Continental
AeroMACS and aviation

- High capacity, modern data link (4G) for communications in the airport surface (vehicles and aircraft on ground, as well as fixed coms)

- Part of the wider future aviation communication infrastructure (FCI)

- Operation in regulated spectrum (5GHz) offering protection from interference (for safety and regularity of flight communications)
 - ITU allocation maintains aeronautical usage for 5 GHz band

- Supports ATM, AOC and Airport communications using single technology, and creates synergies between Airports, Airlines and ANSPs business models
ICAO COM Roadmap: GANP includes AeroMACS
Are there alternatives to AeroMACS for aviation?

- For AOC and/or airport authority communications: Various commercial systems (proprietary, etc.)

- For ATC: VDL2 (with the caveat of potential performance issues)
 - EASA data link report recommends consideration of AeroMACS

- For ATM, AOC and airport authority communications all together: no other option is currently standardised or globally agreed

- What about LTE?
 - Question (is there a case to revert to LTE?) raised in the past
 - SJU COM study (2010/2011) confirmed choice of AeroMACS
 - Aviation cycles are very different from commercial telcom
 - By the time we could reach with LTE the same maturity/consensus as with AeroMACS, new 5G and maybe 6G options would be available to consider beyond LTE.
Are there alternatives to AeroMACS for aviation?

- For AOC and/or airport authority communications: Various commercial systems (proprietary, etc.)
- For ATC: VDL2 (with the caveat of potential performance issues)
- EASA data link report recommends consideration of AeroMACS
- For ATM, AOC and airport authority communications all together: no other option is currently standardised or globally agreed

What about LTE?

- Question (is there a case to revert to LTE?) raised in the past
 - SJU COM study (2010/2011) confirmed choice of AeroMACS
 - Aviation cycles are very different from commercial telcom
 - By the time we could reach with LTE the same maturity/consensus as with AeroMACS, new 5G and maybe 6G options would be available to consider beyond LTE.
Agenda

- Why AeroMACS for aviation?
 - Stakeholders
- Current Status
- Next Steps
AeroMACS: 3 key Stakeholders/Users

- High performance airport surface datalink
- Gate Operations
- Data collection & sharing
- ATC
- Video Surveillance
- Airlines
- Service vehicles
- ATN/IPS Ground Infrastructure (SWIM backbone)
AeroMACS: 3 key Stakeholders/Users

- Airlines
- ANSPs
- Airports
AeroMACS: 3 key Stakeholders/Users

- Airlines
- ANSPs
- Airports
- Airport and AOC
- COMs
- ATM

Data collection & sharing

Gate Q

ATC

Video Surveillance

Service vehicles

Ground Infrastructure (backbone)
AeroMACS implementation perspectives

- Airports (only)
- Airports and Airlines
- Airports, Airlines and ANSPs
Agenda

- Why AeroMACS

- Stakeholders

 - Current Status

- Next Steps
AeroMACS: Summary of status

- Standards are available and planned:
 - Profile (EUROCAE/RTCA/WiMAX Forum)
 - MOPS (EUROCAE/RTCA) and MASPS (EUROCAE)
 - SARPS and Technical Manual (ICAO)
 - Avionics/ARINC spec (AEEC)

- Extensive testing in Europe, US and Japan
 - Europe: Two SESAR1 projects with two independent prototype developments (SELEX and Thales) supporting testing and validation
 - Testing and evaluation in labs, airport and aircraft integration (SESAR1)
 - Europe: Additional testing, trials and/or demos are expected in future (SESAR 2020)

- Implementations are already being pursued (in US starting from ground/airport side)
Agenda

- Why AeroMACS
- Stakeholders
- Current Status
- Next Steps
Next Steps - Europe

Technical work is sufficiently advanced/mature but business case considerations in Europe are at starting point.

- Support completion of pending technical work
- Support users (Airports, Airlines, ANSPs) with information to consider synergies, business case and implementation
- SESAR2020 activities for AeroMACS are expected covering further testing, network aspects, business case
Q?

Nikos Fistas

nikolaos.fistas@eurocontrol.int
Back Up slides
What are the AeroMACS benefits?

- Provides higher throughput for airport surface communications
- Provides relief to the congested VHF spectrum in airports;
- Supports worldwide interoperability and integration of critical coms for ANSPs, AUs and Airports
- Reduces overall costs (via synergies of sharing infrastructure);
- Offers increased security capabilities
- Helps to reduce airport congestion and delays and to enhance situational awareness in the airport surface
AeroMACS: Data Rates and Modulation Schemes

<table>
<thead>
<tr>
<th>MCS</th>
<th>DL Data rate [Mb/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>64QAM 5/6</td>
<td>9.2</td>
</tr>
<tr>
<td>64QAM 3/4</td>
<td>8.3</td>
</tr>
<tr>
<td>64QAM 2/3</td>
<td>7.4</td>
</tr>
<tr>
<td>64QAM 1/2</td>
<td>5.5</td>
</tr>
<tr>
<td>16QAM 3/4</td>
<td>5.5</td>
</tr>
<tr>
<td>16QAM 1/2</td>
<td>3.7</td>
</tr>
<tr>
<td>QPSK 3/4</td>
<td>2.7</td>
</tr>
<tr>
<td>QPSK 1/2</td>
<td>1.8</td>
</tr>
</tbody>
</table>

BS = base station

$d_1 =$ distance from BS to the edge of the coverage area
AeroMACS Activities in Europe: An overview

- SESAR Programme (SESAR 1): 2 AeroMACS projects
 - P15.2.7: System aspects and ground component
 - P9.16: Airborne integration
- EU SANDRA project
- EUROCAE WG82: MOPS, MASPS and Profile

What type of activities:
- Prototype developments
- Testing and Trials
- Analysis and investigations
- Aircraft integration
- Support to standardization and International Coordination

Who has been involved so far:

SJU, ANSPs (DSNA, AENA, DFS), Airbus, Selex, Thales, INDRA, NATMIG, SITA, DLR, Airtel, University of Salzburg, EUROCONTROL, …