

Counter UAS and GNSS RF Interference

High Level Workshop on the current state of C-UAS Systems Session 2: Challenges and Threats (part 2)

Gerhard BERZ

Head of Navigation and Spectrum 4 Nov 2024 gerhard.berz@eurocontrol.int

Counter UAS using GNSS RF Interference

- One potential method to counter UAS is the use of GNSS jammers and spoofers
 - Many products are on the market and may get used during special events by authorities
 - "Jamming by authority action" ANSP Concern / Uncertainty during consultation
 - Common theoretical approach:
 - First jam COM link. UAS may climb to try and regain COM
 - What happens next, depends a lot on UAS design
 - IF UAS attempts to continues trajectory into threat region, navigation jamming or spoofing may be used by authorities
 - What happens next, depends a lot on UAS design
 - Today limited feedback on effectiveness of jamming vs spoofing
- Aviation security concerns favour that C-UAS can effectively achieve their missions
 - Especially near airports
 - However, must ensure that safe operations can be maintained
- In cooperation with various partners, EUROCONTROL has sought to find out if safe coexistence of C-UAS jammers and aviation ops can be achieved by producing best practice guidelines?

Test Plan Phase 1 (EC Joint Research Center - DONE)

- Anechoic Chamber Testing of C-UAS jammers or spoofers
 - Device under test: C-UAS jammer / spoofer
 - No UAS required
 - Measure ACTUAL full 3D radiation pattern of jammer / spoofer, including in particular any relevant side lobes
 - Measure and verify manufacturer specifications for device, especially with respect to radiated power and signal characteristics (manufacturer specification are often minimum specifications, where actual device power can be greater)
 - As many devices to be tested as possible in particular those commonly used by police or military authorities
 - Data can be anonymized if necessary
- Supports theoretical risk assessment of live engagement based on verified data and allows to plan critical encounter scenarios for live tests with UAS

Test Plan Phase 2 (Not completed, still pending)

- Live tests with actual jamming and/or spoofing of UAS with C-UAS device
- Required assets: UAS, C-UAS and authorization to conduct tests at suitable location
 - Note: Multiple UAS with different navigation and recovery capabilities would be ideal.
 At least some of the C-UAS from phase 1 testing must be available.
- Test environment: Ideally in an open sky environment
 - Considered to be very difficult inside a hangar. Large open pit with sky view could be option
- Test objective: Understand encounter scenarios and likely duration
 - Big difference for managing civil aviation compatibility if jamming lasts a few minutes versus tens of minutes
- Phase 2 not started due to both lack of resources and participation
 - Note: IF sufficient in service or other testing experience is available → Phase 2 testing may not be required?

Phase 1 C-UAS Jammers Test Results

 Ad hoc group included EUROCONTROL, EDA, NATO, EC JRC and several European police forces/frequency regulators/military and ENAC

Joint Research Center, Ispra

- Several military or police authorities furnished C-UAS jammers
- JRC facility supports handling classified equipment
- State of the art anechoic chambers and test tools

Test Reports

- Available on request basis only
- State authority which furnished tested equipment needs to provide agreement
- Note: EGITF, EU GNSS Interference Task Force, may continue some activities, in cooperation with JRC and FNAC

C-UAS Impact: Test Results

- Aviation GNSS receiver impact range derived from a previous EUROCONTROL test campaign which assessed a variety of aeronautical receivers vulnerability to a variety of jamming waveforms
- Even when using realistic thresholds, BACK LOBE IMPACT in a realistic case on the order of 50NM+!

C-UAS RF Jamming Solutions – Do they work?

- C-UAS Testing shows that avoiding airport impact even in back lobe is not possible / unlikely
 - Various C-UAS capabilities shown in the past to be effective only against slow rotary wing drones
- IF C-UAS jammers are effective, only two solutions to minimize impact
 - Broadcast less power?
 - Ramp up should be effective against hobby drones
 - Can it be taken into account in procurement specifications?
 - Limit time exposure
- Still need more work on encounter scenarios near airports
 - Difficult / impossible to say today how much of a short duration impact could be tolerable
- The only recipe we have to talk!
 - Make sure each party understands the needs and constraints of the other
 - Reasonable "use of force" only when required
 - Ensure confidential communication channels for tactical coordination.
 - Suitable training, gain experience through exercise, then exchange experience!

Spoofing is the new Jamming...

- C-UAS Spoofers are being advertised as having less collateral impact and being more effective against the target threat
- Is that so???
- MIL Capabilities evolve much faster than aviation can

