Al for Weather Forecasting Development of BI and AI on METAR and TAF data #### Riccardo Patriarca, PhD Sapienza University of Rome - ITALY Dept. of Mechanical and Aerospace Engineering #### Project Introduction 2 **Sapienza** is the oldest university in Rome (founded **1303**), and the largest in Europe: **120,000** students, **3,500** professors. The **Department of Mechanical and Aerospace Engineering** includes research groups specialized in data science applied to diverse engineering problems. **AGIC aiComply** is the Department's technological spin-off, specialized in data intelligence, cloud technologies risk and governance management solutions #### **Today presentation:** Using advanced Business Intelligence and Artificial Intelligence solutions for <u>weather forecasting management</u> #### Disclaimer The following slides are based on publicly available content, as described in the following papers: - Patriarca, R., Simone, F., Di Gravio, G. Supporting weather forecasting performance management at aerodromes through anomaly detection and hierarchical clustering (2023) Expert Systems with Applications, 213, art. no. 119210. DOI: 10.1016/j.eswa.2022.119210 - Simone, F., Di Gravio, G., Patriarca, R. Performance-based Analysis of Aerodrome Weather Forecasts (2022) New Trends in Civil Aviation, 2022-October, pp. 27-33. DOI: 10.23919/NTCA55899.2022.9934004 #### **Project Overview** #### • BACKGROUND • Weather bulletins (METAR) are emitted at regular frequency + forecasts (TAF) and special bulletins SPECI Dedicated **KPIs** defined to capture forecast accuracy Big-data on text strings of bulletins to be **decoded** first, and then **analysed** systematically #### 600'000 METAR/SPECI 60'000 TAF (generic yearly figure) KPI to be developed for **retrospective** analyses and to generate **proactive** indicators • NEED • #### SOLUTION User-friendly **systemic dashboards** for the WSP (top management and operational) ML analysis on KPIs Customized periodic automatic reporting ## Project Aim The project aims to: - --- Forecast weather - Manage forecast accuracy Weather radar station ### **Al** Pipeline Al pipeline passes through three stages: - Data Preparation - Descriptive ML - Predictive ML ## Data Preparation: Decoding Weather Data | METAR | | | | UTC DATE/TIME | |--|-------------------------------------|--------------------------------|--------------------------|---------------------| | LTFM 241550Z 02022KT 0800 R35R/0800D R17 | 7L/P1500N R34L/P1500N R36/P1500N SH | SN BLSN SCT002 FEW017CB BKN02 | 22 M00/M00 Q1025 RETSSN | 2022-01-24 15:50:00 | | LTFM 241520Z 36027G37KT 0800 R35R/0500D | | | | | | 10 20 30 40 50 60 70 | 80 90 100 110 120 130 1 | 40 150 160 170 180 190 | 0 Q1024 RESHSN BE | 2022-01-24 14:50:00 | | Fly | Check weather | Cancel flight | 22 M01/M01 Q1024 | 2022-01-24 13:50:00 | | | TAF DECODER | | 1/M01 Q1024 BECM | 2022-01-24 13:20:00 | | LTFM 241250Z 36023KT 0300 R35R/0 | 0350D R36/0300D +SHSN | BLSN SCT002 SCT017CB BKN022 N | //00/M00 Q1024 RETSSN BE | 2022-01-24 12:50:00 | | LTFM 241220Z 35022G22 | 35N R36/0600D +T | SSN BLSN SCT002 SCT017CB BKN0 | 22 M00/M00 Q1024 RESHS | 2022-01-24 12:20:00 | | LTFM 2411507 | 4L/0225D R36/14 | 100U SHSN BLSN SCT002 SCT017CE | 3 BKN022 M01/M01 Q1024 | 2022-01-24 11:50:00 | | LTFM | 34L/0225N R36/0200N +T | SSN BLSN SCT002 SCT017CB BKN0 | 22 M01/M02 Q1024 RESHS | 2022-01-24 11:20:00 | | | 0175N R36/0225N +S | HSN BLSN SCT002 SCT017CB BKN0 | 22 M01/M02 Q1024 TEMP | 2022-01-24 10:50:00 | | | +L/0325N R36/0300N +S | HSN BLSN SCT003 SCT017CB BKN0 | 22 M01/M02 Q1024 BECM | 2022-01-24 10:20:00 | | | 0275N R34L/0375N R36/0375N +S | HSN SCT003 SCT017CB BKN022 MC | 01/M02 Q1024 RETSSN BEC | 2022-01-24 09:50:00 | | | P1500U R34L/1400U R36/P15 | 500N -SHSN FEW005 FEW018CB BK | (N025 M01/M01 Q1024 RES | 2022-01-24 09:20:00 | | | Q1024 TEMPO TL1000 2000 - | TSSN | | 2022-01-24 08:50:00 | | | 025 M00/M02 Q1024 RESHSN TE | MPO TL1000 2000 -TSSN | | 2022-01-24 08:20:00 | ## Data Preparation: Decoding Weather Data | AERODROME FORECAST - TAF DECODE | | | | | | | | | | | | | |---|--|--|--|---|---|--|---|--|--|--|--|--------------------| | IDENTIFICATION
GROUPS | FORECAST VISIBILITY VISIBILITY | FORECAST
SIGNIFICANT
WEATHER
FORECAST | FORECAST
CLOUD
AMOUNT | CAVOK | | CONDITIONS | ANGES IN FORECAS
S INDICATED BY: | | I I—— | | AGREEME | - | | TAF or TAF AMD or CCCC YYGGggZ NIL Y,Y,6,6,7/2,Y,6,6,2 CNL TAF COR | dddff G f _m f _m KT or MPS | | AND HEIGHT ^a N _s N _s N _s h _s h _s h _s (cc) | , OK | PROBABILITY PROBC ₂ C ₂ | DATE AND
TIME
YYGG/Y _e Y _e G _e G _e | CHANGE | DATE AND
TIME
YYGG/Y _e Y _e G _e G _e | (TX | YYT _F T _F /Y | MPERATUR
Y _e Y _e G _F G _F Z
' _A Y _e G _F G _F Z | | | Indicator of cancelled Period of validity, begin (UTC) and ending on Y Indicator of missing to Indicator of UTC Date and time of issue ICAO four-letter locatio Code names for aerod amended aerodrome if corrected aerodrome | 9999 = 10 km or more Wind speed units used Maximum wind speed (gust) Indicator of Gust Mean wind speed | Forecast significant weather (see table www for METAR/SPECI decode) Prevailing visibility in metres Iscaed what is a second of the | Cloud type - only CB (cumulonimbus) is indicated Height of base of cloud in units of 30 m (100 ft) FEW - FEW (1-2 oktas) BKN - BrokeN (5-7 oktas) OVC - OVerCast (8 oktas) Replaced of the observation | Ceiling And Visibility OK. Replaces visibility, weather and cloud if: (1) Visibility is forecast to be 10 km or more (2) No cumulonimbus cloud and no other cloud forecast below 1 500 m (5 000 ft) or below the highest minimum sector attlude, whichever is greater, and (3) No significant weather forecast (see table overleaf) | the probabilities (a) an alternation elements (b) temporarion of the contained the probabilities (b) temporarion of the contained the probabilities (a) and the contained | y fluctuations eather conditions is et of conditions, thu part of the forecast, | TTYYGGgg | of another . | TX, TN Indicators of maximum and minimum forecast temperatures, respectively | YYT _F T _F Date and forecast temperature at G _F G _F Temperatures below 0°C preceded by M | ~ | Z Indicator of UTC | | | f _m f _m =
200 KMH
(100 KT,
50 MPS) | NSW
WIII S | visibility is available by: VVh _s h _s h _s | | YYGGgg is the | date and time in ho | where FM is the abbreviation
burs and minutes UTC. All the
by conditions indicated after
the properties of the
burners of the
burners of the
properties of the
properties of the
properties of the
properties of
properties of
properties of
properties of
properties of
properties of
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties
properties | forecast conditions | | | | | | | or more | II Significant
Veather | Vertical visibility in units of 30 m (100 ft) Indicator of Vertical Visibility | sector altitude, which | ever is greater, and (| | below highest minimum
egional eir navigation agreement. | For WM | Abbr | WORLD METEC | | | | | 1 50
minir
great | 00 m (5 000 ft) o
mum sector altii
ater, is forecast a
ropriate by: | o CB and no cloud below
or below the highest
tude, whichever is
and CAVOK is not
NSC | | | | | For details of codes, see WMO Manual on Codes (WIMO-No. 306) | eviated decode of TAF | WORLD METEOROLOGICAL ORGANIZATION Weather • Climate • Water | | | WMO decoding instructions + Local decoding practices #### Data Preparation: Defining accuracy KPIs | Event | Event observed | | | | |----------------|----------------|--------|------------------|--| | forecast | Yes | Yes No | | | | Yes | а | b | a + b | | | No | С | d | c + d | | | Marginal total | a + c | b + d | a + b + c + d =n | | Contingency matrixes for binary parameters, which can be generalized for multi-variate parameters. | KPI | Acronym | Analytical expression | |--------------------------|---------|------------------------------------| | Frequency Bias Index | FBI | $FBI = \frac{a+b}{a+c} \tag{1}$ | | Proportion Correct | PC | $PC = \frac{a+d}{a+b+c+d} \tag{2}$ | | Critical Success Index | CSI | $CSI = \frac{a}{a+b+c} \tag{3}$ | | Probability Of Detection | POD | $POD = \frac{a}{a+c} \tag{4}$ | | False Alarm Ratio | FAR | $FAR = \frac{b}{a+b} \tag{5}$ | Key Performance Indicators (KPIs) can be calculated accordingly. ### Data Preparation: Developing the Data Mart Transformation #### Descriptive ML: Clustering similar forecasts (TAFs) Hierarchical Clustering to spot TAFs characterized by "common" aspects The hierarchy dendogram is obtained via the cosine distance in the M-dimensional space $$d_{o_i o_j} = 1 - \cos\left(\theta_{o_i o_j}\right) = 1 - \frac{o_i \cdot o_j}{\|o_i\| \|o_j\|} = 1 - \frac{\sum_{m=1}^{M} o_{im} o_{jm}}{\sqrt{\sum_{m=1}^{M} o_{im}^2 \cdot \sum_{m=1}^{M} o_{jm}^2}}$$ and the Ward linkage criterion (via the Lance-Williams recursive algorithm) $$d_{(C_I \cup C_J)C_K} = \alpha_{C_I} d_{C_I C_K} + \alpha_{C_J} d_{C_J C_K} + \beta d_{C_I C_J} + \gamma \left| d_{C_I C_K} - d_{C_J C_K} \right|$$ #### Descriptive ML: Identifying anomalies **Anomaly detection** to spot outliers in performance for KPIs A Spectral Residual, Convolutional Neural Network is applied $$S(x) = \left\| \mathcal{F}^{-1}(\exp(SR(f) + \sqrt{-1} \cdot P(f))) \right\|$$ $$\mathcal{A} = \{ TAF_u : u = u_{t*}, t^* \mid V_u^e \le t^* \le V_u^s \}$$ ## Predictive ML: Assign forecast error propensity $$\mathcal{A}_{C_i} = \{ TAF_u \mid TAF_u \in \mathcal{A} \land TAF_u \text{ is classified in } C_i \}$$ $$i = 1, \dots, Nc$$ $$\eta_{C_i} = \frac{\left|\mathcal{A}_{C_i}\right|}{s_{C_i}}$$ $$i=1,\ldots,Nc$$ where $|\mathcal{A}_{C_i}|$ is the cardinality of C (i.e., number of anomalous TAFs in the i-th cluster); and s_{C_i} is the size of C_i based on the whole set of historic TAFs obtained from the clustering algorithm. #### Use case: Airport X ## Use case: Airport X ## Use case: Airport X #### Advantages 01 Integration in enterprise database 02 Row-level security for each data field (each user can see only their own data), using a PBI link to be provided 03 Users can navigate data live, to do self-service reporting*, export in PDF/PPT, etc. # Al for Weather Forecasting Development of BI and AI on METAR and TAF data #### Riccardo Patriarca, PhD Sapienza University of Rome - ITALY Dept. of Mechanical and Aerospace Engineering