Use of Machine Learning for Airspace assessment

Navblue - Airspace services

Julien CHAPUIS — <u>julien.chapuis@navblue.aero</u>

03.04.2023

Data analytics for Airspace improvement

Before project

Efficiently capture current practices in airspace:

- Real trajectories flown
- Fuel efficiency

Data analytics for Airspace improvement

During and after project

Measure and fine-tune airspace:

 Fuel efficiency - related to airspace functioning metrics

Trajectory clustering from ADS-B data Deployed since 2022

What?

Quick identification of representative trajectories

At project start

Detect representative vector patterns

During project

Focus on representative trajectories

Fuel estimate from ADS-B data

What?

ADS-B data widely available. Contains **position** and **speed**.

Reconstruct fuel flow Training on FDR 10 airlines, 2 years of traffic

Platform constraintsBig Data: 10Tb+ of ADS-B records

Benefits brought by Al

Low cost of training

Compared to classical performance models

Compatible with large scale datasets

Allows systematic and fast analysis

Efficiency

Provides reliable and exhaustive supportive data.

Frees time to focus on operators and iterate with them

