Supporting European Aviation

AI4CNS FLY AI Forum 2023

Emilien Robert, Ricardo Oliveira EUROCONTROL 20 April 2023

CNS Monitoring AI project

Deployment

Development

Exploration

Surveillance monitoring

- Mode S replies decoding
- Supervised learning
- Natural Language
 Processing

Surveillance monitoring

- Mode S replies allocation
- Unsupervised learning
- Linear regression

GNSS monitoring

- lonosphere gradients classification
- Supervised learning
- Neural Network

Support to MIL PBN

- Measure aircraft performances
- Supervised learning
- Neural Network

Drone monitoring

- Trajectory classification
- Unsupervised learning
- Clusterization

Datalink monitoring - DAISY

- DL messages anomalies
- Unsupervised learning
- Hidden Markov Model

Datalink monitoring

- DL Burst monitoring
- Supervised learning
- Neural Network

Ionosphere Monitoring in support to GBAS

- Context and objectives: detect and characterize specific ionosphere structure potentially impacting GBAS performances and deployment
- Al technology: Machine learning on historical database, using neural network (convolutional & LSTM)

Performance: Accuracy detection improvement from 8% to 16%

Surveillance monitoring - Mode S Context & Objectives

Aircraft – Interrogator (radar) communication characteristic:

- Ground monitoring network can receives all replies from aircraft but not the interrogations
- Only a part of the replies contains a non-unique interrogator (radar) code
- Only a part of the replies contains the message code identifier

Two AI CNS surveillance monitoring projects:

- Mode S replies allocation: to who the aircraft is talking to?
- Mode S replies decoding: what is the aircraft saying?

Surveillance monitoring – Al models

Mode S reply allocation:

Who the aircraft is talking to?

Al technology: Ordered Linear Regression

Performances:

- 91% All-Calls allocated
- 76% Roll-Calls allocated (51% to one radar only)

Mode S reply decoding: What is the aircraft saying?

Al technology: ML based on Natural Language Processing

Performances:

Well-classified messages:

- Heuristic Approach: 99.8633%
- Py Mode S: 93,1690%
- NLP Neural Net.: 99.9987%

Publication:

Best of Conference paper: "Artificial Intelligence For Unidentified Mode S Registers Decoding", ICNS 2022, J. Lopez Araquistain, E. Robert, J. Ceballos Gutierrez,

E. Guillot

- Context and objectives: measure the reality of drone traffic for decision based on actual data, support research projects with real traffic densities and trajectories, using a cost effective solution
- Al technology: Frugal AI used of a priori knowledge clustering with pseudo neural network

Performance: 78% of trajectories well classified: H: 95%, S: 92%, K: 86%, C: 52%, M: 50%

Datalink Monitoring - DAISY

- Context and objectives: Leverages datalink monitoring data, identifies and groups patterns in sequences of datalink events, reduces investigation effort in finding anomalies
- Al technology: Hidden Markov Model & K-mean clustering

Performance: Reduction of analyst's time to find data patterns – from hours to minutes.

Datalink Monitoring - Burst collisions assessment

- Context and objectives: Detect and characterize VDL2 burst collisions from RF monitoring flight sensing.
- Al technology: Machine learning using neural network (convolutional & LSTM)

Performance: 99.55% correct number of +/- 1 collision estimates

EUROCONTROL

Helping military aircraft fly Performance-Based Navigation

- Context and objectives: Measure the total system error of military aircraft to support certification processes of on-board GPS PPS receiver
- Al technology: Machine learning using neural network (Bi-directional LSTM)

Performance: Usability rate of 90% for business application

Building an Al model - Effort and organisation considerations

Typical project

- 4-6 month for prototype & Al model development
- High-end computational capability may be required

Business expert

- > 10% to 20% Full-Time-Equivalent
- Support problem definition
- Provide deep understanding of data, Identify rational behind data outliers

Al coordinator

- > 10% to 20% Full-Time-Equivalent
- Link AI practice to business
- Support opportunities identification
- Support Al model selection

Al practitioner

Al practitioner

- Full-time activity
- 20% Al model development
- 80% data preparation, cleaning, augmentation....

Identify miss-classified – Improve dataset – optimize model **Do it again!!**

ML can only be as good as the data you use to train it

Feature extraction is key. Most of the time and effort goes into **data cleansing** and **feature engineering**

Use **simple models first**, use complex ones as a second step

Today's AI systems are trained to do a clearly defined task

Al can learn to do something but still don't understand it