

Space-Aviation Interface Very High-Speed Operations

Sven Kaltenhäuser, DLR ECHO Workshop 3, Brussels, 06 December 2022

Space-Aviation Interface Very High-Speed Operations

Concept elements

Roles and Actors

Space-Aviation Interface

Very-high speed examples

- Vertical launch
- Air-launch
- Re-entry / From orbit
- A to A
- A to B

Concept Elements

Concept Elements

Restricted Airspace

- Vehicle authorisation may require efficient segregation procedure
- Segregated areas along a flight trajectory for which sufficient levels of safety cannot be assured by other means

4D Operating Zone

- Vehicle-centric area with defined lateral/vertical dimensions
- A 4D volume of airspace moving alongside a trajectory profile
- Allocated to one or several specific vehicles
- Ensures vehicle separation from other (higher) airspace users
- Considers level of uncertainty for type of operation.

4D Operating Zone – Interaction and reconfiguration

- Locations and volumes of 4D operating zones can change over time
- Adaptation to needs and flight intents of different airspace users

HAOSP Managed Airspace

- Strategic de-confliction may not be possible through out flight execution
- Tactical traffic information and monitoring is required
- Higher-Airspace Operation Service Provider (HAOSP)
 - support operators in their separation provision task, and/or
 - provide separation service for HA users unable to do for themselves

Aircraft Hazard Area (AHA)

- Airspace regions endangered by nonnominal situations, which can be cleared of other airspace users on time to prevent any collision with resulting debris
- Dynamic AHA require real-time monitoring and data-processing capabilities
- Dynamic AHA complements use of 4D operating zones and DMAs
 - separation of vehicle operational volume

Roles / Actors (Target Concept)

Mission requirements

Coordination and Reconciliation

Impact of operations on other traffic

Planning phase

- Coordination of intended trajectory, applying strategic deconfliction
 - ATS airspace coordination via CDM together with NM
 - HA coordination via CDM together with NM
 - **Space** operation related coordination via <u>STM service provider</u>
- Mission requirements ←→ impact on other traffic
 - as little impact as possible for other users & European network
- Potential non-nominal behaviour taken into account in planning
 - evaluated at both regimes -> ensuring required safety margins

Execution phase

- Deviations from planned trajectory
 - to be checked for impact in both domains
 - measures initiated through processes in ATM and STM
- **STM service providers** maintain situational awareness and support the vehicle operator through means of SSA.
- **Prioritised execution** required after specific flight events have been initiated (e.g. rocket ignition, re-entry burn)

12

Contingency management

→ Short term

- Based on existing methods and procedures
- HAO planned well in advance
- Strategic measures ensure safety in the event of an incident
 - Flight plan or reserved airspace at launch / re-entry site (segregated airspace)

Management of non-nominal events through coordination at network level, adressed as part of CDM process with agreement of all actors.

Contingencies of <u>High-speed vehicles</u>

- Fragmentation/catastrophic failure
- Loss of flight performance
- Impaired vehicle controls
- Unknown or degraded knowledge of vehicle status
- Loss of communications link between vehicle and launch operator or ATC
- Transponder failure/telemetry failure
- Diversion from the nominal trajectory
- Uncontrolled descent
- Unwanted or early capsule release
- Uncontrolled re-entry
- Need for assistance to land in an alternate site or landing out of nominal conditions

Contingency management → Medium-to-long term (Target Concept)

- High-speed vehicles: time is critical factor: event over one State → impact may be far reaching
- Hazard to airspace users flying below falling debris → cross border contingency procedures needed

Notifies about non-nominal event

NM identifies impacted regions and coordinates

HAOSP & ANSPs / ATSUs

take action based on received information ATCO move traffic tactically away from potential hazard areas

Real-time warnings from vehicle operator / space agency

Trigger rapid response at network level across impacted states

New methods of coordination and communication needed between NM, operators, ANSPs and space agencies and organisations (national or international)

Very-high speed examples

Launchers

Texus sounding rocket (Esrange, Sweden)

PLD Miura 1 sounding rocket

SpaceX F9 Heavy booster recovery Virgin Orbital Launcher One personic (not envisaged from Europe)

Reaction Engines Skylon SSTO Rocketplane concept

Zero2infinity Bloostar concept

Launcher

- Sounding rocket
- Direct Launch Expendable Rocket w/o de-orbit
- Direct Launch Expendable Rocket with de-orbit
- Direct Launch Semi Reusable Rocket
- Direct Launch Reusable Rocket
- Air Launch Expendable Rocket
- RocketPlane

- Re-entry vehicle
- Satellite de-orbit

ECHO Workshop #2

Launchers Direct Launch - Expendable Rocket w/o de-orbit

Flight Freq. Europe (all launchers)

< 2025 : 5-10 / y2025-2030 : 10-20 / y

• > 2030+ : 20-40 / y

Spaceports in Europe: 1-10 (coastal only)

Items: 4+*

• IT1x : Lower stage (booster)

• IT2y : Intermediate stage

IT3z : Upper stage

IT4 : Payloads

today

Time and airspace segregation

Trajectories monitoring

Vertical launch to orbit

Planning phase:

LRO:

- Develops and shares mission trajectory and associated airspace volumes
- Requests restricted airspace,
- Provides mission plan and event chronology
- Considers related contingecy hazard areas

NM, ANSP, HAOSP, STM together with LRO

- Check and coordinate to solve potential strategic conflicts
- Coordinate entry/exit points with STM
- Trajectory / airspace volume optimized (including non-nominal events) through CDM

Submits NOTAM notifying on airspace restrictions

Vertical launch to orbit

Execution phase:

LRO:

- Checks weather / space weather prior launch
- Activates airspace restrictions in ATS airspace
- Activates entry into HAO airspace
- Monitors vehicle, informs ATM, HAOSP and STM on trajectory updates
- Initiate release of airspace restcion when area is clear

NM

Monitors conditions of operation (no emergencies ongoing)

ANSP

Ensures safe operation around restricted airspace

HAOSP

Monitors vehicle position when in HA,
 ensures separation between 4D operating
 zone and other HA traffic

Vertical launch to orbit

Non-nominal event:

LRO:

- Informs NM in real time

Refined Hazard area (RHA) will be calculated based on last vehicle state vector

NM:

- Determins the affected ANSP/ATSU based on RHA

ANSP:

- Receives notification from NM, triggers contingency procedures
- ATCO reactively moves traffic away from RHA

HAOSP

Monitors entry parameters and ensures safe separation provision

Vertical launch to orbit **Continuation of nominal flight:** Rocket continues along planned trajectory

Launchers Air Launch - Expendable Rocket

Flight Freq. Europe (all launchers)

< 2025 : 5-10 / y2025-2030 : 10-20 / y

Potential airports in Europe: 5-10

: 20-40 / y

Items: 5+*

• > 2030+

• IT1 : Airplane

• IT2x : Lower stage (booster)

• IT3y : Intermediate stage

• IT4z : Upper stage

• IT5 : Payloads

< 2025

Time and airspace segregation

Trajectories monitoring

From Orbit

From Orbit Reentry Vehicle

Reentry Freq. Europe (all reentry vehicles)

< 2025 : 1-2 / y
 2025-2030 : 2-5 / y
 > 2030+ : 5-10 / y

Spaceports in Europe: 1-5

Items:1

• IT1 : Reentry Module (RM)

IT2 : Service Module (SM)

today

Time and airspace segregation

Trajectories monitoring

A to A

A to A

- Vertical Rocket
- Air Launch Rocket
- RocketPlane

New Shepard (Blue Origin)

WhiteKnight2 / SpaceShipTwo (Virgin Galactic)

EADS rocketplane

Launcher

- Direct Launch Semi Reusable Rocket
- Direct Launch Reusable Rocket
- Air Launch Expendable Rocket
- RocketPlane

From Orbit

- Re-entry vehicle
- Satellite de-orbit

FIOHOLD

ECHO Workshop #2

41

A to A Suborbital Air Launch

Flight Frequency in Europe

• < 2025 : 0 - 10 / y • 2025-2030 : 0 - 50 / y

• > 2030 : 100 / y

Spaceport in Europe: 1-3

Items: 2

IT1 : Airplane (WK2) IT2 : Spaceplane (SS2)

< 2030

On demand trajectory change

Re-routing / Emergency landing

Trajectory monitoring

A to B

ECHO Workshop #2 Starship Spaceliner concept Falcon XX concept 50

A to B Supersonic Airplane

Flight Frequency in Europe

• < 2025 : 0 / y

• 2025-2030 : 0-50 / day

• > 2030 : 0-200 / day

Airports in Europe: 5-10

Items: 1 airplane

> 2025

Like classical aircraft

ECHO Workshop #2

A to B

SESAL JOINT UNDERTAKING

Hypersonic Spacecraft (vertical landing)

Flight Frequency in Europe

• < 2025 : 0 / y

• 2025-2030 : 0 - 1 / m

• > 2030++ : 0-5/m

Spaceports in Europe: 1-5 (coastal only)

Items: 2

IT1: Booster

• IT2 : Starship

> 2025

Time and airspace segregation

No trajectory change

A to B Hypersonic Aircraft

Flight Frequency in Europe

• < 2025 : 0 / y • 2025-2030 : 0 / y

• > 2030++ : 0-20 / day

Airports in Europe: 5-10

Items: 1 airplane

> 2030+

Time or airspace segregation

Reduced trajectory change

Trajectory monitoring

THANK YOU FOR YOUR ATTENTION