On-Board Performance Monitoring and Alerting Mechanism & Navigation Specifications for UAS Flight Operations #### Pablo Haro "Space and UAS", World ATM Congress 2022, Madrid, 22 June 2022 ## Outline of an OBPMA mechanism for UAS flight ops Objective: to ensure containment of the drone within a narrow 3D corridor along the desired flight path (DFP), i.e. in the domain of the Total System Error (TSE). - Desired flight path, definition and coding - Autopilot: characterisation & op envelope - PVT source: mainly GNSS ### Assessment of PBN Nav Specs for UAS RNP Lateral / Vertical | Drone | Sensor | σ _{HNSE Lat} [m] | σ _{Lat FTE} [m] | RNP Lateral [m] | σ _{VNSE} [m] | σ _{VFTE} [m] | RNP Vertical [m] | |-------------|-------------|---------------------------|--------------------------|-----------------|-----------------------|--------------------------------|------------------| | Fixed wing | GPS-EGNOS | 1.23 | 12.76 | 25.13 ~ 25 | 2.04 | 5.10 | 10.77 ~ 11 | | | GPS-Galileo | 1.70 | | 25.23 ~ 25 | 3.18 | | 11.78 ~ 12 | | | GPS | 3.27 | | 25.82 ~ 26 | 6.63 | | 16.39 ~ 16 | | Rotary wing | GPS-EGNOS | 1.23 | 5.10 | 10.28 ~ 10 | 2.04 | 2.55 | 6.40 ~ 6 | | | GPS-Galileo | 1.70 | | 10.54 ~ 11 | 3.18 | | 7.99 ~ 8 | | | GPS | 3.27 | | 11.87 ~ 12 | 6.63 | | 13.92 ~ 14 | [Values to be validated] EUSPA projects assessing and validating RNP-like concepts for UAS ops: REAL, DELOREAN, REALITY, ... Feedback on the OBPMA mechanism and PBN nav specs from UAS operators and manufacturers, USSP, etc., will also be gathered at the User Consultation Platform (UCP) 2022, 3rd October in Prague. #### Linking space to user needs Get in touch with us www.euspa.europa.eu The European Union Agency for the Space Programme is hiring! Apply today and help shape the future of #EUSpace! ## Rationale (1/2) - A concept for an OBPMA mechanism and nav specs tailored to drone flight ops are proposed. - In response to requirements stated in the 'EASA SC Light UAS Medium Risk', applicable to SAIL III & IV of the specific category. - "Suitable means of compliance (MOC) with this SC will be key to ensure proportionality and to ensure that the same certification basis is suitable for a very wide range of designs including a range of MTOM. No MOCs are presented so far, as they will be developed in a second stage ..." - Three airworthiness specifications have been identified in the 'SC Light UAS Medium Risk, Subpart F Systems and Equipment', where the proposed OBPMA mechanism would play a role and could be considered as a possible MOC. # Rationale (2/2) — airworthiness specifications in SC Light UAS — Medium Risk, Subpart F — Systems and Equipment Light-UAS.2510 Equipment, Systems and Installation .. (3) if the SAIL is IV, a <u>means for detection, alerting and management of any failure or combination thereof, which would lead to a hazard, is available.</u> .. - 4. MOC for Light-UAS.2510 (medium risk) will be defined by EASA at a later stage. - Light-UAS.2511 Containment "a) No probable failure of the UAS or of any external system supporting the operation must lead to <u>operation</u> <u>outside the operational volume</u>. ... Light-UAS.2529 UAS Navigation Function "The UAS must ensure that the UA remains within the applicable spatial limitations or if applicable the intended flight path in all flight phases." ... $RNP \ x = Lateral \ TSE(95\%) = \pm x \ m \ corridor \ for \ the \ RNP \ value \ or \ 'accuracy \ limit'$ $P(TSE > 2 * RNP, \ without \ alert) = P(HNSE > HAL = 2 * RNP - FTE, \ without \ alert) < 1E-\alpha \ (Integrity \ Risk \ per \ flight \ hour)$