

Space based aviation applications

Ruben Flohr World ATM Conference, Madrid, 22 June 2022

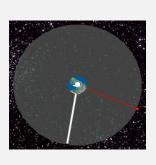
Potential drivers

for moving from terrestrial to space-based

- No terrestrial option available
 Oceanic, remote areas
- Better performance than (some) terrestrial based options Reliable, scalable, capacity, resilience, latency, cybersecurity
- Higher cost efficiency

 Shared resources, shared usage, prioritisation

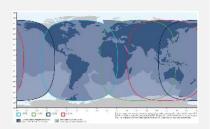
 Regional rather than national or local
- Higher spectrum efficiency

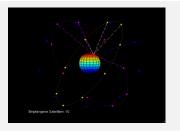

 Bigger surfaces, less impact from curvature earth

CNS satellite systems

Note that distance has impact on:

- -Geostationary & Coverage
- -Rotation time & Doppler effect
- -Transmission time & Latency
- -Potential disruptions


GEO – Geostationary Orbit


• NAV:

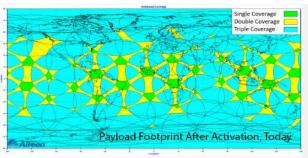
Satellite Based Augmentation System (SBAS) – EGNOS, WAAS, GAGAN

• COM:

MEO – Medium Earth Orbit

• NAV: GNSS:

GALILEO, GPS, GLONASS, BEIDOU



LEO – Low Earth Orbit

COM: Iridium

 SUR: Aireon Payload in Iridium Satellites

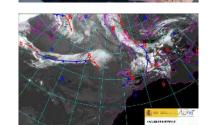
SESAR 3 JU PRESENTATION 22-06-22

Communication: Operational needs

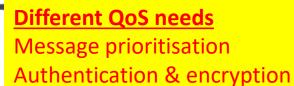
FULL 4D

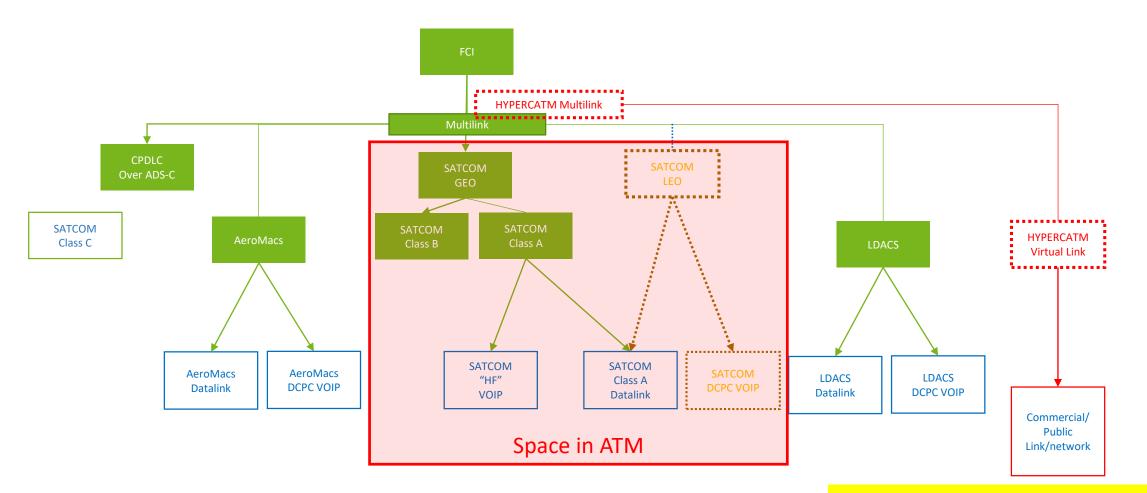
i4D/EPP

- R/T ("VHF radio") Analogue or digital
- CPDLC datalink \ _____
- ADS-C EPP / TBO



- AOC pilot voice connection ("SATVOICE")
- Meteo, Aeronautical- and Network data for EFB
- Passenger services
- Non-critical cabin data
- Flight Engineering data
- New entrants
 - U-space (drones)
 - High Altitude Operations





Communication: Research & Development

Different QoS needs

Message prioritisation \
Authentication & encryption /

Navigation: Operational needs

Area	navi	gat	ion
/ II Cu	IIGVI	But	

VOR, DME

+ GNSS

Approach and landing navigation

• CAT I landings

• CAT II

CAT III

ILS cat I

ILS cat II

ILS cat III

+ SBAS + GBAS GAST-C

+ SBAS + GBAS GAST D/F

+ GBAS GAST-D/F

Airborne clock

+ GNSS

Space in ATM

Accurate (airborne) time reference

SESAR 3 JU PRESENTATION 22-06-22

6

GNSS: SBAS and GBAS evolutions

Technology	Characteristics	Performance
SBAS (EGNOS/WAAS)	Single constellation (GPS), single frequency	CAT. I
SBAS MCMF	Multi constellation, multi frequency (GPS + GALILEO)	CAT. II under research
GBAS GAST-C	Single constellation (GPS), single frequency	CAT. I
GBAS GAST-D	Single constellation (GPS), single frequency	CAT. II/III TRL2 TRL4 TRL6 Target Release R12
GBAS GAST-F	Multi constellation, multi frequency Ground based error processing (GPS + GALILEO)	CAT. II/III GPS independent More resilient against ionosphere disruptions More resilient against jamming Target Release
-uture targeted research on navigation U-space (drones)		TRL2 TRL4 TRL6 R12

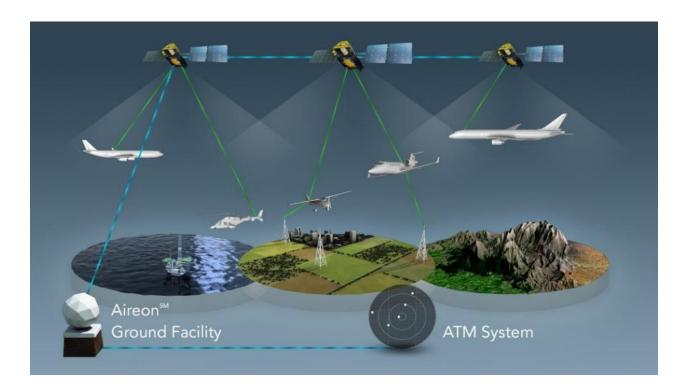
7

High Altitude Operations

From Barometric to Geometric altimetry

Surveillance

The ability to accurately and reliably determine the location of aircraft.


Has a direct influence on the separation distances required between aircraft (i.e. separation standards), and therefore on how efficiently a given airspace may be utilised.

- ➤ Primary radar
- ➤ Mode-S
- ADS-B (Automatic Dependent Surveillance Broadcast)
- ➤ Wide Area Multilateration (WAM)

Industrial research:

- ➤ Improved monitoring by combining signals from space and ground
- ➤ End-to-end performance monitoring

 Space in ATM

Since 2019 NAV CANADA and NATS began using space-based ADS-B data (Certified by EASA) to separate aircraft in the North Atlantic Ocean

THANK YOU FOR YOUR ATTENTION

