

Gérard Mavoian

SESAR solution leader 07th November 2019

Improving flight planning/DCB/airport integration

Better use of spare capacity

Decrease demand instability

SESAR developments coordinated with future ICAO flight plan (FF-ICE) services definition

Enriched DCB information and what-if function

ATFCM regulations, hotspots and congestion indicators along planned and what-if trajectories

Results and conclusions

4 SESAR exercises involving more than 15 dispatchers, 3 ANSPs, NM and one CFSP.

Enriched ATFCM information and advanced what-if services

- Support both AU driven and FMP/NM driven decision processes related to trajectory revisions
- Up to 25% of ATFCM en-route delay reduction in winter season due to better use of spare network capacity
 Limited negative impact on fuel efficiency
- Around 15% of inefficient AU flight plan changes can be avoided thanks to better awareness of ATFCM situation
- CBA Net Present Value: 119 M€

AU preferences – Flight Delay Criticality Indicator

- Procedure accepted by all actors and partially implementable at short term
- Scenarios played with AUs allowed to declare up to 1% of their fleet as critical flights
- CBA Net Present Value: 71 M€

Airport information in AU flight planning

- Strong support from AUs and the CFSP to integrate departure information (planned runway, SID, taxi time) from CDM airports in flight planning
- Use-cases clarified and agreed

User Driven Prioritisation Process - UDPP

Brings to Airspace Users the flexibility they need to reduce their cost of delay, in coordination with ATM stakeholders

FL001 <- FL003 FL003 <- FL002 FL001 FL002 FL003

Validation results - Maturity reached

- 3 simulations with Airlines (Swiss, AF, HOP, Air Baltic, ELAL, IATA) and Airports (Schiphol, Heathrow, Munich) in 2019
- Average 40% reduction of cost of delay and improvement of passenger connections at ECAC level → positive CBA: Net Present Value 192 M€
- Rapid transition to shadow mode trial by Swiss and Skyguide
- The AU methods of prioritization now stabilized and mature
- Wave 2 will address further integration with NM (e.g. network impact) and airport processes (e.g. impact on airport resources)

Dynamic Airspace Configurations

Objectives:

- Increase flexibility in Airspace Management to better exploit capacity/efficiency opportunities
- Respond to performance objectives of increasing traffic & new entrants

Solutions to be deployed after SESAR 2020 Wave 2:

- Dynamic sector design/configuration with sharable modules to accommodate optimized free route traffic patterns
- Dynamic airspace reservations (position and volume)
- CDM process at Regional, FAB and local levels for a cost-effective resource management
- Automated design and management

Expected benefits:

- Increased en-route network capacity
- Reduced flight duration variability
- Increased fuel efficiency
- Cost efficiency

Demand Capacity Balancing (DCB)

Objectives:

- Improve demand/workload predictability at Network level to release capacity buffer
- Integrate local DCB processes with central processes to optimize the Network Operations Plan
- Replace regulations by targeted measures minimizing the impact on demand and taking into account AU business preferences

Solutions to be deployed in short timeframe:

- Targeted flow/flight measures e.g. level-capping, re-routings, flow/flight ground delays, slot improvements and exclusions
- Target Time of Arrival (TTA) measures to reduce arrival delay and optimize arrival sequences
- Early exchange of departure planning information for predictability improvements
- Enhanced ATFCM slot allocation (CASA) with interacting regulations optimization

Demand Capacity Balancing – Performance benefits

- Tactical fine-tuned delay measures (MUAC): ~150.000 min of delay saved for 5000 flights during the Summer 2018
- Tactical level capping (DSNA): Collaborative Advanced Planning (CAP) avoided 12 potential regulations ~4111min of delay on a single traffic flow (15 day-trial in Summer 2017)
- Target Time of Arrival (NATS and HAL): reduction in AFTM delay between 26-41% (1081 flights) compared with conventional regulations (12-day trial in Spring 2019)
- Limited negative impact on fuel efficiency
- DCB solutions in the top 3 of benefit contributors in SESAR Wave 1 performance assessment
- Enhanced CASA promising: ~10% network delay reduction

Conclusions and follow-up activities

- Very tangible and significant benefits for airlines in particular in terms of ATFCM delays cost saving
- Some of the SESAR solutions are already in deployment or will be deployed at very short term
 - Targeted re-route proposal measures shared with the network in cooperation with AUs (N-CAP)
 - Targeted flow/flight measures (slot improvements/exclusion) including AU's priorities
 - Optimised Airport Planning integrated with Network using Arrival Target Times measures
- > SESAR Wave 2 will deliver other solutions for deployment from 2023. Main focus will be on:
 - Integration of ATFCM information in AU systems.
 - Automation of CDM processes

Thank you for your attention!

Go and see demos for more detailed information

