

Measuring the impact of leasing on airlines' cost efficiency: a stochastic frontier analysis

Sylvain Bourjade and Catherine Muller, TBS

LES 3 ACCRÉDITATIONS INTERNATIONALES

www.tbs-education.fr

Aircraft Leasing Growth over the last 50 years

Percentage of global commercial airline fleet leased

Lessors account for ~40% of the world fleet

Total Growth | past 20 Years:

World Fleet X2

Owned Fleet x1.5

Leased Fleet

X4

Source: Flightglobal Ascend fleet database for units and CAPA

Research motivation

- Leasing has become an essential means for financing aircraft
- However leasing is more costly than buying!

- Leasing drivers:
 - Capital requirement
 - Access to credit
 - Flexibility

Efficiency gains

- Increased uncertainty on demand and access to credit
- Market structure changes (entry, mergers, new business models...)
- Leasing, even if more costly, allows for:

• Question: How do leasing choices, through increased flexibility, reduce airlines operational costs inefficiency?

The Model: Cost frontier approach

- Cost Frontier: minimum expenditure required to produce a given amount of service, given:
 - The prices of the inputs used in its production (w)
 - The production technology in place
- Program of the firm:

$$\underset{x}{Min} C(wx, \theta - g(L))$$
subject to
$$f(x, K, z) = Q$$

• The associated cost function, for an airline i, i=1,...,N and at time t, t=1,...,T:

$$C_{it} = C(Q_{it}, w_{it}, K_{it}, z_{it}, \theta_{it} - g(L_{it}); \beta)$$

Empirical Implementation

Estimated Cost function (Cobb-Douglas):

$$C_{it} = \beta_{0}Q_{it}^{\beta_{Q}}K_{it}^{\beta_{K}}w_{lit}^{\beta_{l}}w_{eit}^{\beta_{e}}w_{mit}^{\beta_{m}}z_{it}^{\beta_{z}}\exp\left(\theta_{it} - \left(\gamma_{L}L_{it} + \gamma_{2}L_{it}^{2}\right) + u_{it}\right)$$

$$\Leftrightarrow \qquad \qquad \uparrow$$

$$\ln C_{it} = \ln \beta_{0} + \beta_{Q} \ln Q_{it} + \beta_{K} \ln K_{it} + \beta_{l} \ln w_{lit} + \beta_{e} \ln w_{eit} + \beta_{m} \ln w_{mit} + \beta_{z} \ln z_{it} + \theta_{it} - \left(\gamma_{L}L_{it} + \gamma_{2}L_{it}^{2}\right) + u_{it}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\downarrow \qquad$$

- Estimation technique:
 - Potential endogeneity of leasing: Instrumental Variables (2SLS)
 - Fixed effects
 - Stata

The Data: Sources and Variables

- 247 international airlines (different business models and experience)
- Yearly data: 2007-2016
- Data sources:
 - Financial and operating information: The Airline Analyst, Bloomberg
 - Macroeconomic and Governance data: US Department of Agriculture Research, KPMG Corporate tax surveys, companies websites
- Costs: Total EBITDAR Expenses
- Production: ASK
- Capital: Number of aircraft in the fleet
- Input Prices: Labor (employee costs per FTE), Energy (fuel and oil), Maintenance and Other Ebitdar Costs (landing fees, selling charges,...)
- Leasing: Proportion of operating leased aircraft in the fleet
- Exogenous factors: Competition, GDP, Government holdings,...

Results

Variables	Parameter	T-value
Lease	2.09	4.05
Lease ²	-1.72	-3.85
Nb of Aircraft	.32	10.75
Available Seat Km	.33	9.77
Labour cost	.13	5.39
Energy cost	.27	12.41
Maintenance cost	.14	7.17
Other costs	.21	5.37

All parameters significant at the 5% level.

Findings

Our main results:

- 1. Leasing allows airlines to reduce inefficiency
- 2. Inefficiency exhibits increasing marginal returns to leasing

3. Optimal level of leasing that minimizes the operational inefficiency: **60.5%** Confidence interval [0.57;0.64]

Further research

- Airlines optimally choose the proportion of leasing to improve flexibility and reduce inefficiency:
 - 1. Airlines minimize total costs w.r.t leasing
 - 2. Improving flexibility through leasing is costly (effort)
 - 3. Demand function is included
 - 4. FOC: optimal level of leasing is computed
 - 5. Optimal level of leasing reintroduced in the cost function
- Estimation of the resulting cost function (SFA, MLE)
- Computation of the optimal level of leasing, for each airline
- Comparison of the optimal and the observed levels of leasing

Thank you