3D-in-2D Displays for ATC:
Disruptive Technologies for Future Design

Final Project Presentation
INO 2009

8th EUROCONTROL Innovation Research Workshop, EEC, Bretigny

Middlesex University: William Wong, Stephen Gaukrodger, Fan Han, Martin Loomes, Ifan Shepherd, Bob Field and Paola Amaldi

Space Applications Services: Miguel Muñoz Arancón, Frederic Reiter

NEXT Ingegneria dei Sistemi: Antonio Monteleone

EUROCONTROL: Alan Drew
3D-in-2D Display Project:
In the beginning …

• Objective:
 – Investigate Interactive Visualizations combining 3D with 2D
 – Increase controllers ability to handle 2-3 times current traffic
• The Challenge:
 – Interactive visualisations as disruptive technology
 • enabling new control concepts
 – Looking ahead in a 15 - 20 year time frame, based on how the work is carried out today
 – Envisioned world problem
 • Legacy system vs no legacy system
 • Interaction and visualisation techniques based on future work that has yet to exist; no experience to reflect upon
 • TRL 1-3 new concepts and feasibility, not TRL 8-9 operationally ready, mission deployable
Year 1: What were the 3D-in-2D design issues?

Local 3D Wall View
Local 2D Measurement View
AR 3D Wall for Stack Management

Descent/Left bank

Descent/Right bank

Climb/Left bank

Climb/Right bank
Year 1: Other Outcomes

• The Simplified ATC Simulator
• The Human Centered Innovation Process
• Combination Display Framework: Opportunities for Innovation
• Capabilities Investigation
• The Spatial-Temporal Design Framework
Year 2: The 4Cs Framework
Concepts, Content, Containers and Controls

Concepts

Content

Containers

Controls
Year 2 Key Outcomes

- The 4Cs Framework
- The Work and Technology Matrix
- Focus on cockpits and SESAR
- Spatial-Temporal Design Framework
- Operational Concepts
 - 3D as Multi-dimensional rather than spatial-perspective
 - Aircraft Energy Management (4DT =>4DET=>4DEPT)
 - Multi-Collision Avoidance
 - Can-I-Do-it?
- Control Techniques and Technologies
 - Fish-Tank VR + Proprioceptive displays
Year 3: Consolidating

Punctuality
4DT => 4DET => 4DEPT => ‘Pinch-and-pull’ (multi-) Target Windows
Year 3: Key Outcomes

• Consolidation on ATC CWP
• Punctuality => CATS - SESAR Ops Scenarios
 – 4DT => 4DET => 4DEPT => Target Windows
 – Calculation of TW; re-negotiation; size of TW; distance between
 neighbouring TWs – at departure and enroute; using TWs to control
 arrival time; and the implementation TWs for real-time planning and
 re-planning
• Multi-Conflict Detection
 – Powerful conflict detection capability
• Improved Simple ATCSim
 – Providing the essential inputs for display
• Inter-op with AD4
 – Access to realistic data
• Open ATC HMI Platform
 – Extensions to enable research into unconventional HMI
In summary ...

- Year 1
 - Unconventional interfaces for ATC
 - What are the options? What works?
- Year 2
 - Phase shift – do the unconventional interfaces work in aircraft cockpits?
- Year 3
 - Consolidate and develop to a evaluable state
 - How do these unconventional interfaces affect ATC work?
Insights and Key Outcomes: Disrupting work for future design

- SESAR Challenges and 3D-2D Opportunities
 - Provide ways for controllers to monitor separation in 4D, and separation performance (MCD)
 - Provide controllers with information about contracts and contracts compliance (multi YW)
 - Provide pilots and controllers with tools to communicate about precise navigation plans with detail that is not possible in current practice (Pinch-and-pull)

- The 4Cs Framework
 - A reference model for ATC HMI research?

- An Open ATM HMI Experimentation Platform

- The Spatial-Temporal Design Framework

Wong et al ©2009
Conclusion

• If we want to develop disruptive technologies for ATC,
 – Be willing to accept that the nature of the task will change
 • What controllers do will change
 • How air traffic is managed will change
• Technology => new capabilities => ops concepts ?
• To disrupt => experiment with un-conventional HMI
 – need a low cost, low effort platform with realistic data
 – current simulation platforms reinforces the current 2D radar
 paradigm => procedures, airways, flow rates … can be changed
 easily, but not type of HMI
 – Costly to make frequent changes => something that is likely to
 occur at early concept stages