Research Grant
Creating wake vortex awareness for pilots and controllers
- Progress Meeting -

December 2009
Summary of Activities
Timeline

• Kick-Off in Braunschweig – 20.06.2008
• Progress Meeting at ECTL – 07.11.2008
 – discussion of achieved results, future deliverables
 – presentation at the ECTL Scientific Seminar
• Presentation of concept at WakeNet3-Europe 1st Workshop – 08.01.2009
• Progress Meeting in Braunschweig – 30.06.2009
• papers submitted, accepted and presented at:
 • CEAS 2009 in Manchester – 26.-29.10.2009
 • DASC 2009 in Orlando – 25.-29.10.2009
 • INO Workshop in Bretigny – 01.-03.12.2009
• Progress Meeting in Bretigny – 02.12.2009
Activities of last period - publications

- papers and presentations
 - DASC 2009 (Digital Avionics and Systems Conference)
 - **Collaboration of Wake Vortex Models and Sensors in Modern Avionic Systems**
 - published in conference proceedings and IEEE Library
 - current status: editorial reviewed
 - CEAS 2009 (European Air and Space Conference)
 - **Wake Vortex Prediction and Detection Utilising Advanced Fusion Filter Technologies**
 - published in conference proceedings, peer reviewed publication in *Journal of Royal Aeronautical Society* under discussion
 - 8th INO Workshop
 - **Surveillance Systems On-Board Aircraft: Predicting, Detecting and Tracking Wake Vortices**
 - peer reviewed by workshop committee, published on EUROCONTROL website
Activities of last period – publications (cntd.)

- accepted abstract for next year:
 - ICAS 2010 (September 2010, Nice)
 - topic: use of WV models and sensors in fused system
 - peer reviewed full paper, oral presentation
Activities of last period – presentations, others

- attendance to conferences
 - Global WakeNet, November 2009
 - Onboard Wake Vortex Warning Systems – Developments for the long-term
- link to Russian wake vortex research
 - visit to GosNIIAS,
 - gather information on Russian WV models and “Vortex Vision System”
 - coordinated with EUROCONTROL
Progress in software development and implementation
Simulation for specific error types

- advantage of simulated Lidar data:
 - controlled, repeatable error behaviour
 - known uncertainties
 - detailed investigation of new system possible
Optimisation of filter parameters

state (WV trajectory error, circulation error)

state transition (error random walk)

error/uncertainty-feedback

measurement uncertainty

process uncertainty

Covariance (analogous to uncertainty bound in current models, but decreased by measurement)

Measurement-Update

\[K_k = P_k^{-1} H^T (H P_k^{-1} H^T + R_k)^{-1} \]

\[\hat{x}_k = \hat{x}_k^- + K_k (z_k - H \hat{x}_k^-) \]

\[P_k = (I - K_k H) P_k^- \]

measured quantities (WV circulation, position)

state transition (error random walk)
Error state closed loop – extension of error state

\[\Gamma_{\text{prediction},k}^+ = \Gamma_{\text{prediction},k}^- - \Delta \Gamma_k^+ \]
\[y_{\text{prediction},k}^+ = y_{\text{prediction},k}^- - \Delta y_k^+ \]
\[z_{\text{prediction},k}^+ = z_{\text{prediction},k}^- - \Delta z_k^+ \]
\[v_k^+ = v_k^- - \Delta v_k^+ \]
Error state closed loop - results

- simulation with constant errors
Further work

- derivation of model equation for system dynamic matrix (full state ODE)
- Status of PVM?
 - license?
 - best way: use of error state
 ➔ independent of used prediction model
 ➔ use general equations within full state (like published D2P equations); e.g. from published Wake4D description
- detail work on error state and optimisation
- benchmarking
 - definition of benchmarking
 • a priori or a posteriori residuals?
- further analysis of provided databases