The role of safety validation in ATM concept development: How does it work in practice?

Jelmer Scholte (NLR)
scholte@nlr.nl

Henk Blom (NLR),

Hans van den Bos (LVNL),

Roy Jansen (LVNL)
Motivation and purpose

Development of advanced air traffic operations
- A challenge to satisfy a multitude of heterogeneous requirements from multiple stakeholders
- Effective feedback from validation to development and decision-making is crucial

How does this work in practice?

A practical example of advancing operations for Amsterdam airport
- Crucial role of validation of safety performance
- Many lessons learned
- Initially several advanced solutions were considered, but eventually a simpler, but more costly solution was implemented
Contents

- Motivation and purpose
- **Design challenge faced**
- Development and validation approach
- Factual design/ validation cycles
- Hindsight analysis of process
- Concluding remarks
Design challenge faced

- New runway 18R/36L
- Runway 18C/36C between terminals and new runway
- Capacity needs for simultaneous usage of runways 18R/36L and 18C/36C
Active runway crossings? Southern taxiway? Northern taxiway?
Initial safety studies by external company: each option can be made safe

Decision:
1. Active runway crossings
2. Southern taxiway (as back-up)

ICAO recommendation not to introduce active runway crossings when developing airport

Thus, safety requirements included:
- Runway control concept
- Runway Incursion Alerting System (RIAS)

From here, LVNL took over the development & validation process from the airport
Contents

• Motivation and purpose
• Design challenge faced
• Development and validation approach
• Factual design/ validation cycles
• Hindsight analysis of process
• Concluding remarks
Development and validation approach

LVNL’s integrated VEM Management:
- Veiligheid (Safety)
- Efficiency (Efficiency)
- Milieu (Environment)

Design/ validation cycle:
- Decision by management
- Concept design by development team
- Validation of concept by VEM analysis team
- Communication of validation results
- Go/ no-go decision by management
- If no-go, development team is asked for potential options of design improvement
Contents

• Motivation and purpose
• Design challenge faced
• Development and validation approach
• Factual design/ validation cycles
• Hindsight analysis of process
• Concluding remarks
Cycle 1: Active runway crossings

Decision: Further develop the active runway crossing operation

Design: Detailed design of active runway crossings

Validation approach: Basic risk analysis steps with event-sequence model

Validation results:
- Hazards not previously identified; e.g., R/T confusion, unavailability of R/T frequency
- It could not be assured that risks of collision for crossing and take-off would be acceptable, and criticality of risk was unrelated to RIAS parameters

LVNL decision: No implementation; new development cycle 2a

NLR decision: Further research on the first design, with more advanced safety assessment approach (new validation cycle 2b)
Cycle 2a: Adapted active runway crossings

Decision: Re-design the crossing operation

Design: Main changes with previous design:
- Runway controller 18C/36C controls only one runway
- Crossing starts further away from runway

Validation approach: VEM analysis with
- Similar approach for safety
- Investigation of crossing procedures on other airports

Validation result: It could still not be assured that all risks would be acceptable
- Accident rates at other airports in same order of magnitude as assessed risks

Decision: no implementation
Cycle 2b: Original active runway crossings

Aim: Gain more grip on dynamic and dependent character of crossing operation in new cycle, by NLR and NASA

Design: Same as cycle 1

Validation approach: Monte Carlo simulations using dynamic risk model

Validation result: Confirmation of criticality of risk
- Approach in cycles 1 and 2a may have underestimated risk.
- ATCo reaction on RIAS alert may arrive when pilot already solving the conflict; ATCo perceives to play a key role in conflict resolution
Cycle 3: Taxiing on southern taxiway

Decisions:

- No structural active runway crossings
 - Decreased confidence in reaching VEM objectives
 - Role of ATCos’ acceptance
 - ICAO recommendation
- Permanent solution: independent taxiing via southern or northern taxiway, depending on direction of usage of runway 18C/36C
- Temporary solution needed: northern taxiway not yet available!
Cycle 3: Taxiing on southern taxiway

Design: Dependent taxiing operation on southern taxiway
- Switchable stop bars
- Controlled by RC 18C/36C

Validation approach: VEM analysis
- Event-sequence model
- Monte Carlo simulations with dynamic risk modelling

Validation result: Safety and capacity objectives achieved

Decision: Implement design as temporary solution
Contents

- Motivation and purpose
- Design challenge faced
- Development and validation approach
- Factual design/ validation cycles
- Hindsight analysis of process
- Concluding remarks
Comparison with literature

Waterfall model & V-model assume that problems can be foreseen.

Spiral model [Boehm 1988]: development of complex designs.

The development and validation process studied here appears to fit this spiral model.
Observation 1: Cycles focused on active runway crossings; implemented operation features independent taxiing via perimeter taxiways

- Seemingly less promising solutions may turn out to be preferred
- At the start of a new cycle, generate new alternatives and consider already identified options, and their existing validation results
- Need to store design alternatives and validation results

Observation 2: When selecting options for further design:

- do not base the decision on assessed performance of the evaluated options alone
- also consider their potential for further redesign
Observation 3: Quality of concept development and quality of safety assessment can have major effect on the process, and hence on duration and investments

- What if powerful safety risk assessment tools would have been available from the start?
- Learning curve: developers, validation team, and decision-makers learned how to communicate with and learn from each other
Valuable example in learning from applying various methods towards safety assessment:

- Key roles of ATCos and pilots in most steps of the safety risk analyses of cycles 1 and 2b [De Jong et al., 2006].

- Novel hazard identification approach and its results in cycle 1 [De Jong et al., 2007].

- Dynamic risk modelling and Monte Carlo simulation approach of cycle 2b, and its results [Blom et al., 2006] & [Stroeve et al., 2008].

- Benchmark of event-sequence approach of cycle 1 with Monte Carlo approach of cycle 2b: significant differences [Blom et al., 2008]
Contents

• Motivation and purpose
• Design challenge faced
• Development and validation approach
• Factual design/ validation cycles
• Hindsight analysis of process
• Concluding remarks
Concluding remarks

Initial analysis of development and validation practice at LVNL for a challenging practical problem shows:

- The factual process appears to fit the spiral model of [Boehm, 1988]
- Effective interaction of operational concept developers, validation experts, and LVNL decision-makers played a key role
- Design alternatives should not be discarded because they may appear to be of value later
- Quality of concept development and of safety assessment can have a major impact on duration and investments to realize an operation

For complex designs, validation is most of the time invalidation. Only the last cycle prior to operation is validation!
Question?

2008