An error management approach in aviation and air traffic control

Tom Kontogiannis
Technical University of Crete

Stathis Malakis
Hellenic Civil Aviation Authority
Error detection in aviation and ATC

- Almost half of the errors went undetected but only 2 % had critical consequences (normal airline operations, Thomas, 2004)
- The majority of errors were detected mainly by ATC and, to some extend, by the crew
- Error detection increased with cooperation, contingency planning & workload management
Detection of slips, lapses & mistakes

- Detection was higher for slips and lapses but lower for mistakes (Sarter & Alexander, 2000)
- Aircrew and ATC were more active in detecting slips and lapses
- Mistakes were difficult to detect as others did not know the intention or strategy of the person involved
How active are people in error detection?

- Half of the detected errors were based on observations of poor outcome of actions.
- A quarter of the detected errors were caught incidentally by a routine check.
- Only a quarter of the detected errors were caught by some form of proactive strategy.
A pilot study to support mindfulness and error detection

- **Objectives**
 - Identify proactive strategies that support mindfulness and error detection
 - Examine how mistakes can be caught while an assessment or plan is considered

- **Methods**
 - Analysis of ASRS reports
 - Observations of air traffic controllers
Stages of error detection

Conceptual stage
- Incomplete, conflicting, unreliable data

Execution stage
- Masking effects, diffused data, hard to integrate data

Assess situation
- Conflicting goals, need to modify quickly, time pressure, multiple attempts required

Plan course of action
- Acting & monitoring, coordinating multiple tasks, looking up procedures

Evaluate outcome
- Plan course of action

Rehearse & put in action
- Assess situation
Awareness-based detection

- Makes an effort to detect missing cues
- Makes an effort to find ‘hidden assumptions’
- Tests the plausibility of assumptions
- Tests evidence and does not ‘explain it away’

- Incomplete explanations
 - Tests the plausibility of assumptions
 - Makes an effort to find ‘hidden assumptions’
 - Makes an effort to detect missing cues

- Inconsistent explanations
 - Tests evidence and does not ‘explain it away’
 - Tests the plausibility of assumptions

- Unreliable assumptions
 - Tests the plausibility of assumptions
 - Makes an effort to detect missing cues
 - Makes an effort to find ‘hidden assumptions’
Planning-based detection

- **Environment (Threats)**
 - Continues plan if cost of change is high

- **Change Plan**
 - Anticipates weaknesses in plans
 - Regulates complexity & coupling

- **Avoid threats**
 - Question/ test the plan

- **Mitigate consequences**
 - Considers a timescale for questioning
Action & output-based detection

- **Rehearses future tasks**
- **Carries out pre-action checks**
- **ACT**
- **Masking effects**
- **Considers masking effects**
- **Rehearse**
- **ACT**
- **Delays**
- **Monitor outcome**
- **Re-evaluate**
- **Examines pattern of changes**
- **Verifies sensor accuracy & reliability**

- Creates reminders & barriers
Attitudinal factors in error detection

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
</table>
| **1** | Vigilance and alertness
(‘making the familiar strange’) |
| **2** | Awareness of vulnerability to errors
(widens perspectives, opens up to different views) |
| **3** | Awareness of degradation
(‘drifting out of the loop’) |
| **4** | Coping with frustrations from errors |
Team factors affecting error detection

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Assertiveness</td>
</tr>
<tr>
<td></td>
<td>(balance with ‘tact & consideration’)</td>
</tr>
<tr>
<td>2</td>
<td>Cross-checking others and monitoring for signs of fatigue</td>
</tr>
<tr>
<td>3</td>
<td>Communication of intent supports re-planning and recovery</td>
</tr>
<tr>
<td>4</td>
<td>The ability to adopt multiple perspectives (understand intent & choice)</td>
</tr>
</tbody>
</table>
Detection increases “cognitive burden”

- **Awareness-based detection** calls for a state of ambivalence (e.g., engage in belief & doubt, “make the familiar strange”, test data and assumptions)

- **Planning-based detection** requires people to forgo procedures in favor of what amounts to ‘re-inventing the wheel’ (see old things in new ways, stay ahead of situation, reduce coupling, set milestones to review)

- **Action-based detection** calls for more conscious attention (e.g., rehearsing things, thinking out possible errors, running a conscious check on routine tasks, cross-checking)
Error Management Training
-- ‘Getting the balance right’ --

Resilient actions

Cognitive burden
Error Management Training
-- General approaches --

- Embed error management in CRM (e.g., sharing of intentions, cross-checking, assertiveness, and vigilance)
- Blend cognitive strategies with technical skills by designing simulator exercises (e.g., missing cues, masking effects, poorly integrated cues)
Error Management Training --
Training methods & practice --

- Over-learning can reduce ‘cognitive burden’
- Watch video-taped feedback sessions to detect errors of others
- Replace leaders to support skills in presenting the ‘big picture’
- Methods of communicating ‘intent’ behind orders and plans
- ‘Crystal ball technique’ (counteracts overconfidence, prompts introspection)