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Abstract: 
This report reviews literature into air traffic control complexity. This work was carried out in the context of the 
Complexity and Capacity (COCA) project.  This work reviewed past research (both theoretical and empirical) into ATC 
complexity, and its relationship to controller workload. In reviewing the forty-plus year history of work into ATC 
complexity, this effort identified:  

• The major theoretical views concerning ATC complexity; 
• Candidate complexity factors; 
• Data collection methods for identifying, refining and validating a model of ATC cognitive complexity. 

 
On the basis of this review, a functional model of ATC cognitive complexity is proposed that can help guide the next 
phase of the COCA work. 
The overriding conclusion from this review was that despite the breadth and depth of previous work done into 
identifying ATC complexity factors, a good deal of work remains. Nobody, it seems, has yet managed to construct a 
valid and reliable model of ATC complexity that [1] moves substantially beyond the predictive value of simple traffic 
density alone, and [2] is sufficiently context-free. Further, it is proposed that COCA explore the development of non-
linear techniques to refine and develop its model of cognitive complexity. 
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EXECUTIVE SUMMARY 

 
Controller workload is likely to remain the single greatest functional limitation on the 
capacity of the ATM system). One of the key factors contributing to controller 
workload is air traffic complexity. It is thought that improved measures of ATC 
complexity could benefit, for instance, evaluation of ATM productivity, benchmarking 
cost effectiveness, assessment of the impact of new tools and procedures, and 
airspace redesign. To date, research into air traffic complexity has tended to overlook 
cognitive aspects of the controller’s task. EUROCONTROL’s Network Capacity and 
Demand (NCD) Business Area has undertaken the Complexity and Capacity (COCA) 
project, in part to address this shortcoming.  
 
The chief goal of COCA is to identify, develop and evaluate factors related to air 
traffic control complexity, and to validate and test complexity factors and identify 
those linked with controller workload and sector capacities. Within this broad goal, 
COCA has specifically set out to: 

• Build a model of  air traffic complexity; 
• Apply this model to a comparison of complexity factors; 
• Build a model of sector capacity; 

 
This paper is a review of literature into cognitive complexity in Air Traffic Control 
(ATC). This work reviewed past research (both theoretical and empirical) into ATC 
complexity, and its relationship to controller workload. In reviewing the forty-plus year 
history of work into ATC complexity, this effort identified:  

• The major theoretical views concerning ATC complexity; 
• Candidate complexity factors; 
• Data collection methods for identifying, refining and validating a model of ATC 

cognitive complexity. 
 
On the basis of this review, a functional model of ATC cognitive complexity is 
proposed that can help guide the next phase of the COCA work. 
 
It is clear that the relationship between complexity and workload is an indirect one 
that is highly mediated by the influence of many individual characteristics. Whilst this 
poses obvious difficulties for ever fully capturing the notion of cognitive complexity 
mathematically, it would be overly pessimistic to conclude that the human factor must 
remain an unknown. In fact, the literature on human factors makes it clear that there 
are known aspects of human cognitive functioning (regarding attention and decision 
making, memory, and perception) that can/could be incorporated into a predictive 
model of cognitive complexity. 
 
The overriding conclusion from this review was that despite the breadth and depth of 
previous work done into identifying ATC complexity factors, a good deal of work 
remains. Nobody, it seems, has yet managed to construct a valid and reliable model 
of ATC complexity that [1] moves substantially beyond the predictive value of simple 
traffic density alone, and [2] is sufficiently context-free. Further, it is proposed that 
COCA explore the development of non-linear techniques to refine and develop its 
model of cognitive complexity.
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1. OVERVIEW 

 
Controller workload is likely to remain the single greatest functional limitation on the 
capacity of the ATM system (Majumdar & Polak, 2001). Given predicted traffic 
increases, as well as corresponding developments in ATC procedures and 
technologies, it is increasingly necessary to understand the abilities of controllers and 
to identify the “safe” limits of workload. One of the key factors contributing to these 
limits is air traffic complexity. It is thought that improved measures of ATC complexity 
could benefit, for instance, evaluation of ATM productivity, benchmarking cost 
effectiveness, assessment of the impact of new tools and procedures (e.g. 
Collaborative Decision Making, or CDM), and airspace (re)design (Mills, 1998). To 
this end, EUROCONTROL’s Network Capacity and Demand (NCD) Business Area 
has undertaken the Complexity and Capacity (COCA ) project. 
 
 

1.1 The COCA Project 

 
The chief goal of COCA is to identify, develop and evaluate factors related to air 
traffic control complexity, and to validate and test complexity factors and identify 
those linked with controller workload and sector capacities. Within this broad goal, 
COCA has specifically set out to: 

• Build a model of  air traffic complexity; 
• Apply this model to a comparison of complexity factors; 
• Apply this model to airspace design; 
• Build a model of sector capacity; 
• Apply this model to sector classification; and 
• Apply this model to ATFM validation of airspace design. 
 

 
To date, research into air traffic complexity has tended to overlook cognitive aspects 
of the controller’s task.  In the context of the COCA project, EUROCONTROL has 
recognised the need to incorporate such cognitive aspects of air traffic complexity. 
The aim of the current activity is to ensure a model of traffic complexity that both 
adequately captures those cognitive aspects, and is compatible with EEC’s 
WOODSTOCK and COLA modelling tools. 
 
 

1.2 The Current Literature Review 

 
As the first step in this activity, a literature review was recently conducted into ATC 
cognitive complexity, with an eye toward: 

• Documenting current theoretical views on the role of complexity in ATC 
operations; 

• Cataloguing and evaluating past research into cognitive complexity indicators 
for ATC; and 

• On the basis of the above, to provide a work plan for capturing cognitive 
aspects in the project’s developmental Complexity Index. 
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1.2.1 Organisation and scope of this report 
 
This report is organised into SEVEN chapters. The remaining chapters shall, roughly 
in turn, set out to: 

• Review the concept of complexity as it has been applied in various domains;  
• Summarise theoretical views on complexity and the related notion of 

workload, from the perspectives of human factors, information processing and 
cognitive psychology; 

• Provide an overview of past research, and summarise ATC complexity 
indicators that have been used to date (along with case studies of several 
research projects); 

• To summarise lessons from the literature regarding both data collection and 
data analysis methods that can be applied within COCA;  

• Based on the preceding review, to propose a functional model of cognitive 
complexity that will facilitate the project’s ongoing modelling work; and 

• To summarise lessons learnt and draw specific conclusions for the COCA 
project. 

 
Annex A to this report provides a tabular overview of complexity indicators by project. 
This covers indicators both actually used and merely suggested. Further, Annex A 
does not claim to cite all studies in which a given indicator was used/mentioned. In 
some cases, this was either not clear from the literature source, or was insufficiently 
elaborated/defined. Where available, primary references and brief methodological 
notes are provided. Annex B provides a similar tabular overview of data collection 
methods that seem potentially useful for COCA. Annex C presents a summary of 
potential workload indicators. 
 
 

1.2.2 Literature sources 
 
This review relied on a combination of government and contractor technical reports, 
scientific journal articles, book chapters and operational reviews. Primary sources 
were used as much as possible. Relevant references were drawn primarily from the 
fields of ATM research, human factors and cognitive psychology, and computer 
modelling. Though focused on cognitive complexity, this review necessarily borrowed 
heavily from theoretical and empirical work in the related field of workload 
assessment. The majority (but certainly not all) of the identified literature on ATC 
complexity factors originates from the US, primarily from NASA, FAA and affiliated 
contractors.   
 
A number of seminal reports and articles on the subject of ATC complexity have 
been produced in recent years, including several in-depth reviews of complexity 
factor literature. This report relies heavily on those works, most notably, the work of 
Mogford and colleagues in the US (Mogford et al, 1993; Mogford et al, 1994; Mogford 
et al, 1995; Rodgers et al., 1998); Work by NASA into the concept of “Dynamic 
Density” (Laudeman, 1998; Kopardekar 2000); Airspace complexity work by the 
Wyndemere Corporation (Wyndemere, 1996; Pawlak et al. 1996); and Majumdar & 
Ochieng’s (2000) study of ATC workload factors. Whilst this report does not claim to 
be an exhaustive review, it is thought to capture and synthesise the major theoretical, 
empirical and operational perspectives on ATC complexity. 
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2. COMPLEXITY DEFINED 

 

2.1 What is Complexity? 

 
The Merriam Webster dictionary defines complexity (2) as the state of being “hard to 
separate, analyse, or solve…,” and that would seem to agree with most people’s 
intuition.  Pelz et al (2001) suggested that the terms complex and difficult are 
colloquially synonymous. Other cited synonyms have included complicated, intricate, 
difficult and involved. 
 
Cilliers (1998), in a fascinating scientific and philosophical analysis of complexity, 
distinguishes between “complex” and “complicated” systems. According to Cilliers, if 
a system consisting of a huge number of parts or elements (and thereforee 
complicated) can be given a complete description, it is not by definition “complex.” By 
this reasoning a supercomputer or jumbo jet is complicated, but not complex. In a 
complex system, interaction between elements of the system is such that the nature 
of the whole cannot be determined by analysis of some subset. Cilliers (1998) cites 
human brains, natural language and social systems as examples of complex 
systems, and identifies the following characteristics that define such systems: 
• A large number of elements whose interaction defies analysis by traditional 

mathematical means; 
• Dynamic interaction between elements, that involves transfer of energy and/or 

information;  
• Redundancy that permits some subset of the system to carry out the function of 

the  whole; 
• Localised autonomy and lack of information sharing between all elements; 
• Non-linear interactions between elements, which makes it possible for small 

perturbations to have large effects. 
 
One could be forgiven for reading the above characteristics, and assuming that 
Cilliers (1998) was referring to ATC in particular!  In fact, one realises that ATC is not 
entirely unique as a complex human-machine system.  Other examples of complex 
systems include Emergency Management, C3I systems (Worm, 2001), Nuclear 
Power Generation, and Maritime systems (Perrow, 1999), a group that Fields et al. 
(1998) termed “distributed cognitive systems.”  
 
Dörner (1995, in Schaefer, 2001) added opacity to Cilliers’ (1998) list of complex 
system characteristics—that is, not all system variables can be directly observed. A 
controller, for instance, may ask pilots for performance data on their aircraft, but must 
still guess about the influence of weather (cf. Schaefer, 2001). 
 
In the literature on ATC complexity, surprisingly few definitions of “complexity” appear 
to have been given (Schmeidler & D’Aanzo, 1994), presumably because the authors 
assume common knowledge. Meckiff et al (1998) defined complexity as a 
“…measure of the difficulty that a particular traffic situation will present to an air traffic 
controller…” Meckiff et al. (1998) went on the describe workload as 

 
“…a function of three elements, firstly, the geometrical nature of the air 
traffic; secondly, the operational procedures and practices used to 
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handle the traffic and thirdly, the characteristics and behaviour of 
individual controllers (experience, orderliness etc.)….”  

 
It is this third element (which, of the three, seems closest to the notion of cognitive 
complexity) that has thus far proven most difficult to mathematically formalise.  
Mogford et al. (1995) defined complexity as “a multidimensional concept that includes 
static sector characteristics and dynamic traffic patterns,” and noted that the concept 
is subjectively defined by controllers. 
 

2.2 System Engineering Approaches to Complexity 

 
In natural systems, the concept of complexity is closely tied to the notion of “entropy” 
which has been used to describe the state of “disorder” in a system (as in the second 
law of thermodynamics, which states that entropy of a system can only increase, as a 
system naturally evolves in energy state toward randomness). The notions of system 
complexity and entropy have also been applied more generally to man-made 
systems, in particular the analysis of information transfer systems. This breakthrough 
owes much to the work of Shannon (1949), who developed a mathematical theory of 
information transfer that formed the basis for information theory. According to this 
view, information content (literally, the system’s ability to reduce uncertainty) can be 
mathematically described in terms of its entropy (expressed in binary units, or bits, of 
information). Within such a system, a completely predictable message would be said 
to have zero entropy (randomness), and therefore zero complexity. In a sense, this 
view captures the nature of latent information within a system, as do thermodynamic 
views of energy state. According to information theory, a complex system is one in 
which randomness (and therefore uncertainty) is high. The quantification of this 
concept is easy to grasp, even at the level of an individual information transfer (i.e. 
message). Selecting the letter “A” from a possible 26 letters transfers 5 bits of 
information, namely the maximum number of binary split half decisions (“is the 
chosen letter in the upper or lower half?”) one would need to determine a randomly-
chosen letter from the entire alphabet. This concept clearly underlies the working of 
current day computers, and has also been a useful one in the evaluation of man 
machine systems (Johannsen and Rouse, 1979) to evaluate, for instance, team 
communications, and human eye scan behaviour (Harris, Glover & Spady, 1986). 
The notions of entropy and information theory have even been used to evaluate 
information transfer in honeybee and ant behaviour (Michelson, 1993). In ATC, the 
notion of entropy has been applied to the predictability of traffic arrival location 
(Mehadhebi 1996, cited in Christien et al., 2003) and also the general dispersion of 
traffic (Histon & Hansman, 2002). 
 
Over the years, various other system engineering and mathematical approaches 
(e.g., control theory, utility theory, and queuing theory) have been used to model 
behaviour in complex human-machine systems.  In general, such approaches have 
attempted high level descriptions of the task, to normatively1 model human 
behaviour. Curry and Gai (1976), for instance, modelled the human as a failure 
detection system that employs a Kalman filter to eliminate uncertainty due to 
perceptual noise. Optimal control models (cf. Sheridan and Ferrell, 1974) liken the 
human to a state estimator who must perceive a signal in against background noise 
(again, perceptual), generate a control output, compare the output to a desired goal 
state, etc.   
                                                 
1 Normative models (which describe optimal behaviour) are distinguished from descriptive 
models (which attempt to capture actual behaviour). 
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Of the various system engineering efforts at modelling human-machine interaction, at 
least two have focused on ATC. Schmidt (1978) used queuing theory to analyse ATC 
workload. Unlike some other system engineering approaches, queuing theory does 
not view the operator as some comparator between current and desired state (a sort 
of glorified thermostat). Rather, it defines performance in terms of task completion 
times. On the basis of operational ATC data (collected from Los Angeles en route 
controllers), Schmidt derived a mathematical expression that showed a reasonable 
ability to predict average delay and server occupancy as a function of demand. 
 
Hunt and Zellweger (1987) suggested that the ATC system can be described in 
terms of closed loop control theory, with a planning function involving a set of goals 
to define the future state of the system, a controlling function to identify deviations 
and formulate actions needed to return the system to normal, and a communication 
function within the controlling function that conveys these actions to the aircraft.  
Finally, a data management function is employed to collect, record and distribute 
information. The model does not appear to have been empirically evaluated. 
 
Despite the successes of past system engineering approaches in modelling human-
machine interaction, there are some remaining shortcomings. Humans are not, after 
all, a set of servomotors and filters and comparators that seek to optimise behaviour 
in some normative way.  They are subject to biases and limitations in terms of 
perception, decision making and attention that can not always be captured a priori. 
As Johannsen and Rouse (1976) noted, such system engineering attempts to 
analyse human behaviour in complex systems have tended to disregard: The task 
environment per se; Human adaptability to fluctuating task demands; and human 
limitations in analytic thinking. Rouse (1980) noted that the difficulties that have beset 
system engineering approaches to human-machine interaction have tended to fall 
into one of three broad categories: 
 

• Measurement difficulties— can take several forms. First (and as noted 
several times throughout this report) it is not possible to infer inner 
process on the basis of observable behaviour. Second, measures might 
be noisy due to non-repeatability, the time varying nature of human 
behaviour, or individual differences. As a result, modelling attempts to 
capture such unobservable processes as decision making or planning 
have often been forced to rely on average or aggregate measures of 
behaviour, thereby losing precision. 

 
• Non-uniqueness of constrained optimality—powerful modelling 

techniques are best at modelling normative, or optimised, behaviour. It is 
clear from evidence in various fields (including economics (Kahneman, 
Slovic & Tversky, 1982) and emergency management (Klein, 1993) that 
humans do not “optimise” but “satisfice”—that is, they tend to follow a 
utilitarian approach that settles for a solution that is “good enough” but not 
necessarily the best available.  In multi-stage decision making tasks (in 
which each decision point is dependent on previous decisions) the 
sequence is therefore hard to predict. 

 
• Pervasiveness of task environment—an analytic modelling of human 

behaviour can only be relevant if all task environments are common 
(Simon, 1969). Rouse (1980) noted that human behaviour is difficult to 
predict in the absence of a context.  
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After roughly half a century of analytic modelling, and system engineering 
approaches to human-machine interaction, many of the same criticisms seem to 
persist: Niessen et al (1999) argued that quantitative attempts to capture human 
cognition still largely fail to adequately capture the cognitive parameters of coping 
with high workload. It is in response to this recognised shortcoming that the COCA 
project explicitly set out to address the notion of cognitive complexity. 
 

3. COMPLEXITY IN ATC 

 
The consensus view among the ATC research and operational communities is that 
complexity drives controller workload, which in turn is thought to ultimately limit sector 
capacity2 (Christien, Benkouar & Chaboud, 2003, Majumdar and Ochieng, 2000). 
Whereas Mogford et al (1995) claim that “ATC complexity generates workload,” 
Athenes et al (2002) noted that “the functional relationship between the two is largely 
unknown.” In any event, research into ATC complexity has been inextricably 
intertwined with the notion of workload, as discussed in the next chapter. Given the 
apparent consensus on the definition of “Complexity” in ATC, one might be surprised 
to learn that research into the factors underlying ATC complexity has run a long, and 
still inconclusive, course.  In fact, the earliest clear research reference to ATC 
complexity and associated factors dates back nearly 40 years (cf. Arad, 1964), nearly 
to the beginning of the ATC era itself.  
 
Traditionally, traffic density has been the single factor most associated with 
complexity. However, it is increasingly clear that density by itself is an insufficient 
indicator of the difficulty a controller faces. Anecdotal evidence suggests that 
controllers increasingly speak not of the difficulty of a given traffic density, but of the 
associated traffic complexity (Kirwan et al., 2001). Past attempts to assess 
complexity have generally relied on geometric relationships between aircraft (Histon, 
2000), or on observable physical activity (Pawlak et al., 1996). Increasingly, it is 
being recognised that complexity factors can interact (Fracker & Davis, 1990) in non-
linear ways (Majumdar & Ochieng, 2000; Athenes et al, 2002), and that individual 
differences between controllers can mean that different controllers respond differently 
to the same constellation of complexity factors (Mogford et al., 1994). These are 
among the considerations that seem to be driving the search for a better way to 
describe and predict complexity as it affects the controller. 
 
 Traffic complexity seems to have been studied in the context of five main areas: 

• The occurrence of operational errors or incidents (Stein, 1985; Grossberg, 
1989; Mogford et al, 1995; Breitler et al, 1996; Rodgers et al., 1998; Rodgers 
& Nye, 1993; Gosling, 2002); 

• Controller workload (Arad, 1964;Grossberg, 1989; Redding, 1992; Athènes, 
S., Chaboud et al., 2000); 

• Conflict risk (Knecht, Smith & Hancock, 1996; Schmidt, 1976; Arad, 1964) 
and  

• Controller decision making (Mogford et al., 1994); 
• The design of decision support and flight planning tools (Leal de Matos, 1998; Schaefer et al., 

2001; Masalonis et al., 2003). 
                                                 
2 Interestingly, the implicit intervening factor between workload and capacity—namely 
controller error—has thus far shown little relationship to traffic complexity (Stager & 
Hameluck, 1990; Gosling et al., 2002), although the data may be inadequate in this area 
(Rodgers, et al., 1998). 
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Whereas the goals, methods and theoretical bases often differed across the areas 
mentioned above, there was substantial overlap in how complexity was defined and 
measured across studies. To help identify potential complexity factors, a wide net 
was therefore cast across literature from these various areas. 
 
Addressing the complexity literature presented some differences in terminology in 
how complexity is defined, measured and used. For the sake of coherence, the 
remainder of this report will adopt the following conventions: 
 

• CONSTRUCT- is a high level characteristic of the system (e.g. Complexity, 
Safety, etc.); 

• FACTOR- is a qualitative expression of that indicator (e.g., Traffic Density); 
sometimes referred to as “METRIC”; 

• DEFINITION— also known as an operationalisation, this is specification of 
how the construct will be concretely measured and expressed (e.g., aircraft 
per sector volume); 

• UNIT—is the quantitative expression of that definition (e.g., number of aircraft 
per km3). 

 

3.1 Correlates of ATC Complexity 

3.1.1 Traffic density 

 

It seems from the literature that no single traffic characteristic has been as cited, 
studied and evaluated as has traffic density (whether it is termed traffic count, 
density, or traffic load) in terms of its influence on complexity and controller workload. 
The body of literature seems at the same time to praise the concept of traffic density 
(as the best available indicator of complexity), and to criticise it (mainly on the 
theoretical grounds that it does not capture the richness of what controllers find 
complex (Kirwan et al., 2001; Mogford et al., 1995; Athenes et al., 2002)).   
 
This ambivalence is built on a long history of experimental and operational evidence. 
Davis (1963) showed that both communication time and manual performance time 
increase with traffic density. Arad (1964) derived a formula for controller workload 
based on observational data that related the number of aircraft (together with sector 
size, average traffic speed, rules of separation (in NM), and tightness of organisation) 
directly to controller load. Hurst & Rose (1978) found that density accounted for 53% 
of variance seen in activity and workload in enroute controllers. 
 
A simple diagram (below) illustrates how complexity can vary independent of traffic 
density. This diagram compares flight with (left) and without airway route structure 
(right (van Gent et al, 1997)). Ten aircraft are presented in the same locations in 
each diagram.   
 
In the figure on the right, headings have been altered for four of the ten aircraft 
(assume, for the sake of simplicity, that all aircraft are level at the same altitude). It is 
obvious at a glance that the task of monitoring for conflicts and predicting where such 
conflicts might occur, is made more difficult if traffic flow is made only slightly less 
organised.  This figure, by the way, also highlights one of the major potential 
cognitive hurdles to be overcome if mature free flight is to be achieved, namely, the 
removal of current day route structure would greatly increase the complexity of the 
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controller’s task and would, in particular, make it much more difficult to detect 
conflicts. 
 
 

 
Traffic flows with route structure (left) and without (right). After van Gent et al. (1997). 

 
 
It has been noted that traffic density is not only an important driver of complexity, but 
also correlates well with conflict rate. (EUROCONTROL, 2002b). It does not, 
however, seem to correlate highly with the number or extent of altitude transitions 
(Chaboud et al, 2000).  Further, a single indicator of density may not accurately 
capture the traffic pattern over time. Traffic volumes that fluctuate wildly over time 
(say, low routine traffic punctuated with one or two pronounced rushes per day) are 
more likely to generate conflicts (and appear complex to the controller) than is a 
sector of uniform traffic flow. (Chaboud, 2000). 
 
Density itself can be defined in different ways. It can, for instance, be the average 
number of aircraft present in a fixed airspace over some defined period of time 
(Hilburn, 1996); It can also be the average density encountered by each flight 
(Chaboud et al, 2000).  
 
Ideally, a complexity indicator should apply independent of such factors as 
equipment sophistication, traffic volume, or size of the controlled airspace (Chaboud 
et al, 2000). As several have suggested, however, this is seldom the case (Koros et 
al., 2003; Kirwan et al., 2001). 

 

3.1.2 Incidents / operational errors 

 

Several studies have focused on the role of air traffic complexity in ATC errors 
(alternatively referred to as Incidents, Losses of Separation, AirProxes, or—as they 
are somewhat benignly termed in the US—Operational Errors). Surprisingly, the 
operational evidence does not convincingly make the case to link the two. Grossberg 
(1989) found a relationship between complexity (as defined by FAA Order 7210.46) 
and errors in Chicago enroute airspace. Reviews of ATC incidents in Canada (Stager 
& Hameluck, 1990; Stager, 1991) concluded that most errors occurred during low or 
moderate traffic load and normal traffic complexity.  Similar data have emerged from 
studies of US ATC operational errors (Kinney, 1977; Redding, 1992). In Europe, it 
should be noted, the 2000 mid-air collision over Germany occurred on a clear, quiet 
night.  

Controlled Flight Free Flight
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Of the various complexity indicators evaluated by Breitler et al. (1996), most showed 
very low correlations with operational errors. The three that showed significant 
correlations were: Number of Letters of Agreement (LOAs) associated with a sector 
(r=.162); Number of airports and fixes in a sector (r=.219); and subjectively-rated “ease 
of transitioning” (r=.231). Rodgers & Nye (1993) classified the severity of errors, and 
found no correlation between either the number of aircraft or traffic complexity and error 
incidence. Kirwan et al (2001) reviewed the occurrence of UK airspace conflicts for 
1997, and found that traffic volume (or rate of increase), communications, and 
procedures were the factors most cited. Somewhat surprisingly, weather and airspace 
design were not cited in the incident reports as causal factors (though the authors note 
potential reporting biases). 
 
Rodgers et al. (1998), noting the lack of convincing operational evidence tying 
complexity and error, argued that there is a logical link between the two, and speculated 
that the data are to blame for the weak confirmatory evidence. In fairness to this view, it 
does seem that the prevalence of light traffic conditions might skew some of the 
data..That is, it is likely for much of the world that light air traffic prevails (perhaps with 
pronounced rush periods) and that high traffic might only appear for, say, 10% of 
each day. For this reason, it might be more appropriate to control for this pattern 
statistically when examining error. It is not clear that the research community has fully 
considered this option. 

 

3.2 The Cognitive Nature of the ATC Task 

 
The ATC system has two often-cited, and rather self-evident, goals.  First, to ensure 
adequate separation between airborne aircraft, and second to expeditiously move 
aircraft through a fixed airspace.  In a sense, beyond adherence to the ICAO 
mandated separation standards of 5 nm and 1000 feet (under RVSM), there are very 
few other constraints on how a controller should handle air traffic.  Gosling (1987; 
2002) noted that ATC problems are often complex and ill-defined, in that ATC 
represents a large solution space– that is, ATC accommodates any number of 
successful strategies within the basic system constraints (Cardosi & Murphy, 1995).  
ATC represents a probabilistic environment (Leroux, 1992), in which improper 
behaviour does not necessarily lead to a negative outcome (Reason, 1988).  
Because many different strategies can be used to reach the same acceptable 
outcome, criterion measures of ATC performance have proven elusive (Hopkin, 
1980; Stein,1987).   
 
Danaher (1980) noted that, in carrying out the functions of ATC, the controller must 
perform a variety of tasks.  These include:  

• Observing aircraft (either directly or via computer-generated displays);  
• Operating display controls;  
• Making data entries;  
• Processing and updating flight progress information;  
• Communicating with both aircraft and ground-based agents;  
• Co-ordinating with co-workers; and  
• Selecting/ revising plans and strategies.   

 
A more detailed list of controller tasks was provided by Seamster (1993), who 
conducted a cognitive task of en route ATC: 
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• Maintain situation awareness—i.e. maintain understanding of current and 
projected positions of aircraft in the sector to determine events that require 
attention; 

• Develop and revise sector control plan; 
• Resolve aircraft conflict; 
• Reroute aircraft; 
• Manage arrivals; 
• Manage departures; 
• Manage overflights; 
• Receive handoff; 
• Receive pointout; 
• Initiate handoff. 

 
These ATC tasks have obvious implications for such aspects of human performance 
as visual perception (Day, 1994), monitoring (Thackray & Touchstone, 1989; 
Thackray, 1991), planning (Layton, Smith & McCoy, 1994), decision making (Amaldi, 
1994), and memory (Stein, 1991).  
 
While many other authors over the years have provided similar analyses of the tasks 
underlying ATC, a simple and more recent one is presented by Pawlak et al. (1996) 
who combined four major controller activities into a functional schematic, as shown 
below. 
 

Evaluate Formulate
Plan

ImplementMonitor

Plan
 G

oa
ls

Conformance
with or deviation

from Goal =
Conflict

Identification

Set of
observations

Actions required

Result of actions
on system  

A model of the mental and physical processes required in ATC 
(after Pawlak et al., 1996) 

 
Pawlak et al. (1996) defined four types of general tasks that controllers must perform. 
Of these, only the Implementation processes are observable (though the authors are 
careful to note that this is not always so—planned co-ordination can, in fact, be a 
form of implementation without observable action). Pawlak et al (1996) note that it is 
the other three processes—planning, monitoring, and evaluating—that combine to 
create mental effort for the controller. Smith et al 1992 (cited in Newman et al., 1993) 
similarly identified four types of cognitive processes in ATC: Perception; Planning; 
Control (i.e. selection of next behaviour) and Execution.  
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3.2.1 An information processing view of the ATC task 
 
Notice that all approaches to modelling human-machine interaction assume a sort of 
analogy, whether it is the human as a optimal feedback device (Baron. & Levison, 
1977), or as a pattern recogniser (Curry and Gai, 1976), or as a time-shared 
computer (Schmidt, 1976), etc. Whilst each approach has its utility, and has been 
applied in various applications, the model that seems currently favoured for ATC from 
a human factors perspective is that of the controller as an information processor 
(Mogford et al, 1994; Pawlak et al, 1996, Wickens et al., 1997). This seems a useful 
one to adopt, as it permits an inherent link to the cognitive processes that the 
developmental model of cognitive complexity is trying to incorporate. This section will 
briefly review some of the work into the information processing model of human 
machine interaction, focusing on ATC. 
 
It has been useful (for both research and system engineering) to conceive of human 
cognition in terms of information processing steps, somewhat akin to the current-day 
computer. This model distinguishes the sequential steps of Input (the stimuli of, say, 
sound or vision), Processing (perception and decision processes) and Output 
(response execution).  Overseeing these processes is the role of attention (cf. 
section 4.3), which can be deployed as required. 
 

This generic model, which is built up on decades of work dating back to the 1950s, 
has proven useful because it allows human cognition to be deconstructed in a way 
that permits the underlying processes (e.g., decision making, memory) to be studied 
individually. It provides the basis for a number of more specific models, such as the 
Cognitive Control Model (CCM, cf. Schaefer, 2001) that explore a part of the Input-
Processing-Output chain. 

ResponseStimuli
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Perception
Decision and
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A model of human information processing (after Wickens, 1980). 
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3.2.2 The role of decision making in cognitive complexity 
 
No review of the literature on cognitive complexity would be complete without 
considering the role of human decision making and, in particular, what is known 
about how humans recognise patterns, and make decisions, under demanding real 
world conditions.  
 
Perhaps the most salient aspects of the ATC job are the highly skilled, yet routine and 
stereotyped nature of most required actions.  Ironically, these are just the combination 
of factors that can lead to certain decision making biases.  Decision making is 
generally defined as that process occurring midway between the acquisition/exchange 
of information and a subsequent action (Nagel, 1988).  Decisions made under risk  
(when outcomes are associated with known probabilities) are often distinguished from 
those made under uncertainty (when outcome probabilities are unknown).  It is 
assumed that most real-world decisions are made under uncertainty.  A pilot electing to 
continue an instrument flight in deteriorating weather, for instance, is unaware of the a 
priori probability of a successful outcome (i.e., safe landing) for exactly such an aircraft, 
weather pattern, mental state of pilot, etc.   
 
Normative (i.e., optimum performance) models of decision making maintain that a 
decision maker will act rationally (minimising loss, maximising profit) in goal seeking.  
Clearly, humans do not always act so rationally.  For instance, human limitations in 
statistical estimation can introduce systematic decision making errors.  From their 
observations of systematic biases in human decision making, Tversky & Kahneman 
(1974)3 inferred the use of several major "heuristics," or strategies that lessen the 
cognitive burden of the decision making task, by narrowing the range of contingencies 
to be examined.  Heuristics are "rules of thumb" that humans develop with experience, 
and which guide them in both problem recognition and decision making.  In daily life, 
such individual heuristics normally serve each of us well.  Because heuristics can 
colour our expectations, however, there are occasions when they can introduce 
decision making biases and sub-optimal strategies.  Some of these sub-optimal 
decision making strategies include: 

•   Bias against vagueness in subjective probabilities (Baron, 1988)– people will 
consistently predict an event of known (albeit low) probability over one 
whose probability is unknown; 

•  Biased risk aversion (Tversky & Kahneman, 1974)– people are risk aversive 
for gains, yet risk taking for losses; 

•  Memory availability bias (Tversky & Kahneman, 1974)– memory vividness 
drives subjective probability; 

•  Unwarranted confidence (Tversky & Kahneman, 1974)– people show an 
unwillingness to reconsider options; 

•  Inability to extrapolate growth functions (Wagenaar & Segaria, 1975)– people 
underestimate growth in an increasing function; 

•  Rejoice and regret (Bell, 1982)– people consider both subjective probability 
and their anticipated reaction. 

 
Further, empirical data suggest that decision making can also be impaired by stress 
(Broadbent, 1971; Hockey, 1986), which can lead to premature closure, non-
systematic scanning, and temporal narrowing (Keinan, 1987).  Decisions that rely on 

                                                 
3 Kahneman was awarded the 2002 Nobel Prize in Economics for the application of their joint 
work to the field of economics (Tversky died in 1996, and the Nobel prize is not awarded 
posthumously). 
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working memory (as opposed to, say, retrieval from long term memory) are especially 
error-prone: Planning is likely to be shallower (Johannsen & Rouse, 1991) and 
consideration of alternatives more limited (Sheridan, 1987; Halford, Wilson & Phillips, 
1998) under such conditions.   
 
Unfortunately, domain experts seem just as susceptible (and in some cases, more 
so) to decision making biases that can colour how a situation is perceived, or data 
are estimated, or how thoroughly alternatives are considered. There has been 
extensive research overt the last 20 or so years into the notion of Aeronautical 
Decision Making (ADM (Jensen, 1992)). ADM describes the host of techniques 
available to the flightdeck crew (or single pilot) to minimise and mitigate the effect of 
judgement errors (e.g. continuing VFR flight into IMC (cf. Goh & Wiegmann 2002)). 
Techniques include risk assessment, stress management, interpersonal crew co-
ordination and communication, etc.   
 
The now nearly defunct traditional view of decision making was that humans acted 
rationally so as to optimise utility (the field grew out of, and borrowed much of its 
terminology from, the field of economics) by fully identifying the problem, considering 
alternatives, and acting so as to maximise gain. Increasingly (Dietsch 2001) 
emphasis is being placed in the notion of Naturalistic Decision making (NDM), which 
addresses decision making in real world conditions that are often characterised by 
risk, dynamic changing settings, feedback, shifting goals, and ambiguous 
information. In practice, this means that experts tend to base decisions on intuition 
(Dreyfus & Dreyfus, 1986) and quick recognition of a situation (Klein, 1993).  For the 
expert, selection of action is then trivial.  Plans need to be modified only if the 
situation later makes it clear that the original assessment was in error. Observational 
data from naturalistic settings (e.g., fire fighting (Klein, 1993)) suggest that experts 
spend more time deliberating over recognition of a given situation than they do on 
response selection, and are reluctant to reverse their initial assessment.  Indeed, 
anecdotal evidence suggests that quick situational recognition, and confidence in 
judgements, are two characteristics highly valued in air traffic controller selection and 
training assessment.  Unfortunately, there are times when hasty decisions and 
unflappable self-confidence can lead to disastrously unanticipated outcomes. 
 
Bisseret (1981) found that air traffic controllers were more willing to detect a conflict 
and issue a corrective command), as the difficulty of predicting the future state of an 
ATC system increased.  This finding has potential implications for advanced 
controller tools (e.g., MTCD), which might extend the time horizon for trajectory 
prediction and conflict detection capabilities beyond that of the human.  As Bisseret’s 
(1981) data would suggest, controllers in such future systems might be overly 
sceptical of machine-supplied strategic advice.  
 
In summary, it is useful to bear in mind that cognitive complexity in ATC relies heavily 
on controllers’ perception and recognition of the pattern (“ah, this is going to be a 
hard pattern”). Research into decision making biases strongly suggest that 
“normative” models of complexity overlook these decision making biases. Whereas 
these biases might be systematic in nature (e.g., controller’s last traffic pattern might 
unduly colour recognition of a new pattern), their effect is likely very idiosyncratic in 
practice (e.g., each controller has a unique history). 
 
Given the close relationship between ATC complexity and workload, it seems useful 
to  now review some of the literature on the factors underlying workload, in particular 
the relationship between complexity, taskload and workload. 
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4. WORKLOAD IN ATC 

 
This section reviews what is currently known about mental workload, particularly from 
the field of ATC. One of the few areas of almost universal agreement in the literature 
on ATC complexity is that complexity plays a major role in driving controller workload.  
Workload in ATC is generally mental, as opposed to physical, in nature. The following 
section will therefore briefly review what is known about mental workload. 
 

4.1 Mental Workload 

Interest in defining and developing metrics of mental workload has grown dramatically 
since the mid 1970s (Sanders & McCormick, 1987; Wickens, 1980). Most attempts to 
define mental workload have grown by way of analogy out of the concept of physical 
workload (Meshkati, Hancock & Rahimi, 1990).   
 
The lack of a clear definition is reflected in the disagreement over appropriate metrics of 
mental workload.  It seems generally agreed that mental workload is not a unitary, but a 
multi-dimensional concept (Leplat, 1978; Moray, 1979; Kramer, 1991), that taps both 
the difficulty of a task and the effort (both physical and mental) brought to bear (Gopher 
& Donchin, 1986).  It therefore represents an interaction between task and operator, 
that can vary for different task-operator combinations (Leplat, 1978).  Such factors as 
time pressure, noise, stress, and distraction can all influence the 'human costs' of 
performing a given task (Hancock & Chignell, 1988; Jorna, 1993).  Aptitude, skill, 
experience, operating behaviours, and personality traits have all been cited as 
determinants of subjective workload in ATC (Bisseret, 1971; Sperandio, 1978).  Clearly, 
the same given task might represent a reasonable amount of workload for an 
experienced operator, yet overtax a novice.  The distinction is generally made between 
taskload (the objective demands of a task) and workload (the subjective demand 
experienced in the performance of a task). 
 
Inherent in the notion of mental workload has been the concept that the human 
operator has a limited capacity to process information.  Information processing 
models of the 1950s grew out of the field of communications engineering.  
Experiments into “dichotic listening” by Colin Cherry in the early 1950s demonstrated 
the difficulty humans have in dividing attention. In what has been termed the “cocktail 
party phenomenon,” people are able to attend to only one source of information, 
unless some salient stimulus— such as their own name—is broadcast.  The notion of 
channel capacity was adopted to explain limitations of the information processing 
system.   
 
Based on mounting evidence, theories of attention have been significantly refined 
over the years. The 1970s saw the emergence of “resource models” of attention, 
which postulate that all cognitive processes demand resources that are available only 
in limited supply.  Whereas channel theories had assumed a structural bottleneck on 
information processing, resource models held that limitations were functional, in the 
form of attention or effort (Sanders, 1979).  If task demands exceed available 
resources, performance declines.  Conversely, if task demands fall short of supply, 
then the amount of residual resource provides a measure of spare mental capacity.   
 
Perhaps the most widely accepted current model of human attention is the Multiple 
Resources model, as proposed by Wickens (1980). According to this model, tasks 
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differ on the basis of demands they place in terms of: input modality (visual versus 
auditory); data input code (spatial /verbal) stage of processing 
(encoding/central/response); and response type (manual versus verbal) 
characteristics.  This model is diagrammed below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
According to this multiple resource model, the degree of interference between two 
tasks can be characterised by the tasks' compatibility along the dimensions outlined 
above.  This model has proven useful in predicting what sorts of tasks (do they rely 
on spatial or verbal information? Do they require verbal or manual response? Is 
information auditory or visual?) will interfere with one another. Further, workload in 
this model is the demand that tasks place on a limited supply of attentional resource.   
 

4.2 ATC Task Load Factors 

Task load (i.e., the demand imposed by the ATC task itself) is generally distinguished 
from workload (i.e., the controller’s subjective experience of that demand). A number of 
studies have attempted to identify traffic-related workload factors for ATC.  Of many 
prospective task load indices, the number-of-aircraft-under-control (i.e., traffic load) has 
shown the clearest predictive relationship to workload measures (Hurst & Rose, 1978; 
Stein, 1985).  As with complexity, traffic density does not appear to fully capture 
workload. Some of the other (airspace-related) ATC task load factors include:  

• Sector flow organisation (Arad, 1964); 
• Number of traffic problems (Kalsbeek, 1976);  
• Number of flight altitude transitions (Cardosi & Murphy, 1995);  
• Mean airspeed (Hurst & Rose, 1978);  
• Sector area (Arad, 1964); 
• Mean aircraft separation (Arad, 1964); 
• Aircraft mix (as it relates to differences in aircraft performance envelopes);  
• Variations in directions of flight (Wyndemere, 1996);  
• Proximity of aircraft and potential conflicts to sector boundaries 

(Wyndemere, 1996); and  
• Weather (Scott, Dargue & Goka, 1991; Mogford et al., 1994).   
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The Multiple Resources model of human attention (after Wickens, 1980). 
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Airspace factors are clearly not the only contributors to ATC task load.  Such other 
considerations as the ATC position (e.g., oceanic versus terminal (Wickens, Mavor & 
McGee, 1997)), and the controller interface (including both the visual display and the 
data entry system) are critical in determining a controller’s task load.  They do not 
always do so, however, in predictable or beneficial ways.  As research from other 
domains has demonstrated, a system’s interface itself can impose additional task 
demands.  For instance, automated tools can have the unintended effect of raising 
task load (Selcon, 1990; Kirlik, 1993).  The potential for such situations appears 
increasingly likely as more sophisticated “advisory” types of decision aids emerge 
within ATC.  By presenting the controller the additional tasks of (1) considering the 
system's advice, and (2) comparing the system's solutions to those he/she must 
continue to generate (if he/she is to remain “in the loop”), such decision aiding 
automation might paradoxically force an additional task upon the controller (Hilburn, 
Jorna & Parasuraman, 1995), or lead the controller to feel “driven” by the system 
(Whitfield, Ball & Ord, 1980).  
 

4.3 ATC Operator Factors  

The link between ATC task load and workload is a causative (albeit indirect) one, that 
is influenced by a number of internal factors. In the past, attempts to assess ATC 
workload have sometimes equated measures of direct task performance (such as 
time to perform discrete ATC tasks) with workload.  Such observable workload 
(Cardosi & Murphy, 1995), however, provides only a partial picture of the workload 
experienced by a controller.  For instance, a controller’s observable performance 
cannot always convey the cognitive task demands—such as planning, decision 
making, and monitoring—imposed by ATC.  Factors such as skill, training, 
experience, fatigue and other “stressors” all mediate the relationship between task 
demands and the workload experienced by a controller.  Further, strategy plays an 
especially important part in determining a controller’s workload.  Notice that within 
very basic system demands, there are few constraints on how a controller should 
handle air traffic (Cardosi & Murphy, 1995; Leroux, 1992; Reason, 1988).  As a 
result, the system can accommodate various control strategies without suffering a 
negative outcome (i.e., a loss of separation or, worse, a collision).  How a controller 
chooses to prioritise tasks, or the compensatory strategies used to respond to workload 
fluctuations (e.g., shedding or deferring tasks, and deciding which tasks to handle first, 
or becoming more cautious in bad weather), all influence the controller’s workload 
(Koros et al., 2003).  The figure below (after Hilburn & Jorna, 2001) depicts a simplified 
schematic of the relationship between ATC task load and controller workload.  Many 
other factors (e.g., time pressure, motivation, effort) are omitted from this figure. The 
literature review revealed a number of compensatory cognitive strategies that 
controllers use in accommodating changes in complexity and workload, and these are 
presented later in section 4.8.  
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A model of ATC workload (after Hilburn & Jorna, 2001). 
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5. THE RELATIONSHIP BETWEEN ATC COMPLEXITY AND 
WORKLOAD 

 
Over the years, various studies have shown a strong relationship between complexity 
factors and controller workload (Hurst & Rose, 1978; Stein, 1985; Grossberg, 1989; 
Laudeman et al., 1998). Mogford et al. (1995) reviewed a number of studies 
examining the effects of ATC complexity on workload and performance.  Their 
resulting model of ATC workload links “source factors” (analogous to the task load 
factors of Hilburn & Jorna’s (2001) model presented in section 4.4.1.), through 
mediating factors (the operator factors of Hilburn and Jorna (2001)) to resulting 
workload. As shown below, Mogford et al. (1995) considered ATC complexity a task 
load factor (along with traffic and sector characteristics). 
 
Not all researchers are sanguine that the relationship between complexity and 
perceived workload can ever be adequately expressed mathematically. Delahaye 
and Puechmorel (2000) suggest that the “complexity” of controller workload prevents 
its use as a concept. Their work, instead, set out to define a complexity indicator that 
specifically disregards controller workload. 
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The relationship between ATC complexity and workload 
(after Mogford et al. (1995). 
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5.1 Controller Compensatory Strategies for Handling Complexity 

 
As noted, there are many operator factors that can influence the transformation from 
complexity to perceived workload.  These can be loosely grouped in two groups: 
controller characteristics, and compensatory strategies. In trying to refine a model of 
cognitive complexity, both must be considered. Examples of the former would include 
skill, which can obviously mediate the perception of workload by shifting tasks from 
controlled to automatic processing (Schneider & Shiffrin, 1977; Shiffrin & Schneider, 
1977), as when a car driver ultimately learns to shift a manual transmission 
automatically (in the cognitive sense). Age is another characteristic that might 
mediate the workload function. At first glance, it would seem feasible to empirically 
evaluate the influence of controller characteristics such as age, years of experience 
etc., and to incorporate this information into the model. Likely to be more challenging, 
however, is the process of capturing and embedding in a predictive complexity 
formula the second group—namely, the strategies that controllers seem to use to 
respond to fluctuating task conditions, by changing the way in which they perceive or 
organise information. Such strategies are likely to be dynamic (Davison & Hansman, 
2002), and idiosyncratic (Mogford et al., 1997). 
 
Histon (2002) appears to have doe the most work (or at least brought the most 
attention to) the issue of how controllers respond to complexity through cognitive 
strategies. 
 

5.2 Complexity and Workload: Some Distinctions 

 
Several researchers have distinguished between characteristics of the airspace itself, 
and characteristics of the traffic per se, as they relate to complexity and workload 
(Arad, 1964; Mogford et al 1995; Majumdar & Ochieng, 2000). Grossberg (1989) 
made the distinction between static and dynamic aspects of the overall traffic pattern 
(cf. Rodgers et al., 1998). Static elements of the traffic include fixed sector 
characteristics such as sector size, placement of sector boundaries with respect to 
traffic flow, etc. Dynamic elements of the traffic pattern include the ephemeral 
aspects such as instantaneous traffic count, etc. A similar distinction was made by 
Chatterij and Sridhar (1998) who defined airspace complexity in terms of [1] structural 
elements and [2] flow complexity. Whereas the former relate to fixed geometric 
features of the airspace (e.g. number and intersections of airways), the latter refer to 
such as number and interactions of aircraft.  
 
Arad (1964) distinguished three types of ATC task load in ATC: Background Load 
(the normal load associated with monitoring the screen, without any traffic present; 
Routine Load (resulting from the control of a standard aircraft); and Airspace Load 
(resulting from the separation of aircraft). Arad proposed the notion of Dynamic 
Elements of Load (DEL), as a means of creating a criterion against which ATC 
workload could be quantified. According to Arad, DEL consisted of the load 
represented by one standard, straight-and-level aircraft overflying the sector for one 
hour. 
 
EUROCONTROL (2002b) has relied on a similar notion in developing the workload 
model for its Re-Organised ATC Mathematical Simulator (RAMS): ATC workload in 
this model derives from a combination of routine workload, conflict monitoring, and 
climb and descent monitoring. 
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Histon & Hansman (2002) claim that controllers rely on higher level organisations 
and conceptualisations of the traffic pattern in their perception of complexity. These 
three “structure-based abstractions” are: Standard flows, Traffic groupings; and 
Critical points. 
 
Christien et al (2003) distinguished dynamic factors as being either flight related 
(e.g., number  of aircraft, peak traffic hours, proximity to centre boundary) or 
interaction related. Interaction-related factors seem to capture some greater 
abstraction (Histon & Hansman, 2000) regarding the traffic flow, such as the flow 
entropy, or the time between conflict detection and resolution. 
 
Chaboud et al (2000) distinguished between “real” and standard” conditions, with 
respect to workload and equipment. Whereas real workload results form the actual 
conditions (and limits the ability to compare across sites), “standard complexity” 
workload allows performance to be benchmarked using standard complexity 
parameters. So-called “standard equipment” workload evaluates complexity in terms 
of standard task duration, thus allowing cross-site comparisons independent of 
equipment differences. The authors argue that this characteristic makes it the most 
appropriate indicator for cross-site comparisons of complexity. 
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6. PAST RESEARCH 

 
The preceding sections were meant to provide a brief theoretical background on the 
approaches that have been used to evaluate ATC complexity. In this course of this 
review, background on human factors aspects of cognitive complexity were 
highlighted, as well as some of the major themes, issues and debates within the body 
of literature. This section sets out to review the major empirical work that has been 
done, and to provide a list of candidate factors for evaluating ATC cognitive 
complexity.  
 
It should be noted that literature sources differed in the depth of detail provided on 
indicators. This largely depended on the nature of the work (theoretical versus 
empirical). Where possible, details regarding definitions and measurement units were 
noted. Often (and especially in non-empirical work), however, indicators were 
mentioned only at a high level, without specification of either how they should be 
defined, nor how they should be measured (e.g. such indicators as “inadequate 
procedures” or route crossing or convergence points” (Christien et al., 2003) are 
mentioned as ATC complexity indicators only generally. In some cases, this was 
because a given article was theoretical in nature, or was a high level / summary 
review of work references elsewhere. For this reason, the accompanying list of 
Complexity Factors (Annex A) attempts to provide only primary references for each 
indicator. 
 

6.1 Complexity Indicators  

 
This section summarises selected research into the identification of ATC complexity 
indicators. Annex A to this report provides an overview of all identified complexity 
indicators. 
 
Davis (1963) was perhaps the first to systematically examine the relationship 
between ATC complexity and controller workload. This study examined the influence 
on controller workload of the following factors 

• Traffic density (defined as 50,65,80,100% of the actual studied sector) 
• Complexity (defined as proportion of arrival and departure traffic to overflight 

traffic—30,50,70%) 
• Number of airport terminals (1 versus 2) 

The study found that workload (defined as total task time) responded to both traffic 
density and complexity (as defined in this study). 
 
Arad (1964) examined the impact of various airspace factors on controller workload.  
Arad’s work distinguished between background, routine and airspace load factors, 
and related these to conflict risk. Complexity factors included: 

• Sector flow organisation  
• Sector area  
• Mean aircraft separation  
• Climbing and descending aircraft 
• Aircraft that have to be handed off vertically 
• Aircraft that must be handed off to a terminal 
• Pop up aircraft 
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• Frequency congestion 
• Number of intersecting airways 
• Number of military flights 
• Mix of aircraft type 
• Sector shape 
• Presence of restricted airspace 
• Proximity of sector boundary 
• Time between conflict detection and resolution 

 
A standardised airspace load factor was computed on the basis of data from 13 
enroute centres. This study showed that routine controller load was affected by 
placement of sector boundaries in relation to main traffic flows. Arad noted that 
sector design could greatly influence controller workload. If sector boundaries are 
aligned with the main traffic flow, controllers enjoy more time and space.  One 
criticism of Arad’s work has been that the concept of flow organisation was left 
loosely defined (Rodgers et al., 1998). 
 
 
Jolitz (1965) attempted to validate the workload formula of Arad (1964), but was 
unable to show that it could predict controllers’ rated workload any better than could 
simple traffic count. 
 
Schmidt (1976) developed a controller workload model based on the frequency of 
events that require a decision and action on the part of the controller. Schmidt’s 
method relied on the execution time and frequency of observable tasks to calculate 
the so-called Control Difficulty Index: 

  
 

 
 
Where:  Wi = the event weighting based on task execution time 
Ei= the expected number of events per hour 

 
Potential factors from this study included 

• potential conflicts between aircraft at route intersections 
• potential overtaking manoeuvres on airways 
• routine procedural events 

The attractiveness of this approach lies in its implicit connection to the underlying 
decision making process. Unfortunately, it is not clear how to apply such a measure 
practically or cost-effectively. Whereas it is easy enough (albeit insufficient (cf. 
Pawlak et al 1996)) to count overt controller actions, it seems unlikely that one could 
ever feasibly tally the number of times a controller made a decision (for instance, how 
can one reliably determine in a  “real world” setting when a controller has taken a 
decision not to take action?). Schmidt conducted field surveys to establish the 
weighting and frequency factors for various events. This led to the identification of the 
following as the most demanding events (in order of descending difficulty): 

• Preventing a crossing conflict 
• Preventing an overtake conflict 
• Handoff 
• Pointout (i.e. identifying a conflict or situation to another controller)  
• Co-ordination with other controllers 
• Pilot requests 
• Traffic restructuring (i.e. rerouting) 

CDI = Σ WiEi 
 i 
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Hurst and Rose (1978) explored the relationship between expert ratings of controller 
activity (“Pace ratings” (Kuhar, 1977)) and several factors, including 

• hourly traffic 
• peak traffic count 
• communication time 
• number of aircraft path changes 

They found that traffic density accounted for 53% of the variance seen in activity and 
workload in enroute controllers.  
 
 
Buckley et al. (1983) reported on two studies designed to establish the simulation 
and analysis feasibility of different techniques. In the first, he varied traffic density 
and sector geometry. Relevant factors included: 

• number of aircraft 
• fuel consumption 
• time under control 
• distance flown under control 
• fuel consumption under control 
• time within boundary 
• path changes 
• number of ground to air communications 
• duration of ground  to air communications 

The second study collected a larger data set with a subset of the initial factor 
groupings. Results showed that sector geometry and traffic density interact for each 
of the workload measures. Factor analysis on the second set of data revealed four 
factors, which the researchers labelled Confliction, Occupancy, Communication, and 
Delay. In going from the first to second study, the researchers noted that the set of 
workload factors could be reduced with no appreciable impact on measurement 
accuracy, and with improved interpretability. 
 
 
Stein (1985) conducted a simulation to explore the relationship between controller 
workload and 

• total amount of traffic 
• number of handoffs 
• localised traffic density 
• number of hand offs inbound 
• number of hand offs outbound 

Taskload was manipulated as the number of aircraft in the sector (low, medium, high) 
and localised traffic density (clustering). Regression analysis on ATWIT (subjective 
workload ratings) recorded once a minute showed that four factors (localised traffic 
density, number of handoffs outbound, total amount of traffic, and number of hand-
offs inbound) together explained 67% of observed variance. This study showed the 
importance of localised traffic density on controller perceived workload: In his 
research, density was defined as the degree to which aircraft clustered within a small 
part of the airspace. This notion has intuitive appeal: it is not the overall airspace that 
matters, but the degree to which aircraft are squeezed together.  As seems typical 
from the literature, there are various other ways to address the same notion of 
clustering. 
 



EUROCONTROL Experimental Centre 
Network, Capacity and Demand management – NCD 
 

Cognitive Complexity in Air Traffic Control – A Literature Review  Page 23 

EUROCONTROL

Dynamic Density (approximately 1995 - ). Some of the work into complexity was 
motivated by the concept of FreeFlight (RTCA, 1995) which has received increased 
attention over the last decade. Free Flight refers to the (partial or total) transfer of 
route selection and separation assurance authority from ground (ATC) to air 
(flightdeck). Closely coupled with the notion of free flight was the concept of Dynamic 
Density (Wyndemere, 1996; Laudeman et al 1998; Sridhar et al., 1998, Kopardekar, 
2000; Kopardekar & Magyrits, 2002; Masalonis et al, 2003a; Masalonis et al., 2003b). 
Dynamic density was defined (Lauderman et al, 1996) as “a measure of control-
related workload that is a function of the number of aircraft and the complexity of 
traffic patterns in a volume of airspace.”  
 
In response to the RTCA’s Task Force 3 report regarding free flight (RTCA, 1995), a 
multi-organsation, multi-year research effort was initiated in the US to explore the 
development of a model that could incorporate traffic count and traffic complexity 
indicators in one. The aim was to benefit both the free flight initiative, and other ATM 
concepts such as dynamic resectorisation (Hadley et al., 2000; Wyndemere, 1996). 
This work was carried out over three phases, with partners including FAA, NASA, 
MITRE, Wyndemere (later Metron), and Titan Systems4.  
 
Using a number of variables to describe each traffic sector (eg. number of aircraft 
with 3-D Euclidean distance between 0-5 nautical miles excluding violations….), 
Dynamic Density was intended to permit the traffic-based workload of a controller to 
be predicted using objective information. It is speculated that this information can be 
used to predict highly complex situations in real time for up to 20 minutes before they 
happen, therefore allowing the additional demand to be met by preplanning and 
actions such as staff reassignment, alternate airspace configurations and modified 
traffic patterns.   
 
The Dynamic Density notion was developed and validated operationally (Laudeman 
et al., 1998). A large data set was analysed using split half multiple regression (i.e., 
half of the data were used to set regression weights, and the other half were used to 
test these weights). The eight main factors contributing to Dynamic Density were 
(Laudeman et al., 1998): 

• Heading change—number of aircraft making >15 degree heading change 
within 2 minute period 

• Speed change—number of aircraft with an airspeed change  of >10 kts (or .02 
Mach) within a 2 minute period 

• Altitude change-- number of aircraft making >750 ft altitude change within 2 
minute period 

• Minimum distance 0-5 miles-- number of aircraft with <5 nm. separation (in 3D 
space) to closest aircraft, within 2 minute period 

• Minimum distance 5-10 miles—as above, for 5-10 nm. separation 
• Conflict predicted 0-25 miles— number of aircraft predicted to be 1-25 nm (in 

2D space) within next 2 minutes 
• Conflict predicted 25-40 miles—as above, for 25-40 nm. 
• Conflict predicted 40-70 miles—as above, for 40-70 nm 

The results of the Dynamic Density composite measure showed that whereas traffic 
density by itself accounted for 33% of the explained variance in controller activity (r= 
57), this was increased to 55% (r=.74) using the Dynamic Density equation. In 1998, 
the team presented the following regression weightings for each of the factors (higher 
weightings indicate higher predictive value): 
                                                 
4 much of the work cited in this chapter (e.g., Wyndemere, 1996; Mogford et al., 1997) was 
conducted in support of the dynamic density research program. 
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• Heading Change (2.17) 
• Conflict Predicted 25-40 (1.85) 
• Conflict Predicted 40-70 (1.85) 
• Minimum Distance 10 (1.18) 
• Minimum Distance 5 (1.02) 
• Altitude Change (.88) 
• Speed Change (.15) 
• Conflict Predicted 0-25 (.10) 

Notice that as of 2000 (Sridhar, 2000), the Dynamic Density work had arrived at the 
following factor weightings (relative to a standard weighting of 1.00 for traffic density): 

• Conflict (0,25) = 4.0 
• Speed difference = 3.72 
• Conflict (25,40) = 3.00 
• Altitude change = 2.94 
• Speed change = 2.45 
• Heading change = 2.40 
• Minimum distance = 2.45 

Still later, a set of 33 complexity factors was agreed across the researchers. This list 
is not reproduced here, but can be found in Annex A. 
 
A few shortcomings of the Dynamic Density work have been noted. First, factor 
weightings were applicable only in the sector in which they were collected and 
validated. The importance of Heading Change, for instance, was likely driven by the 
fact that the chosen sector had a large proportion of arrival traffic and vectoring 
(Laudeman et al., 1998). The researchers noted that more effort should be made to 
validate the results in other airspace.  Second, the work still relied on observable 
behaviour as a criterion measure of controller workload, despite widely-
acknowledged shortcomings of such an approach (cf. Pawlak et al., 1996).  Third, 
Kopardekar and Magyrits (2002) suggested that the results of the Dynamic Density 
work could be extended and improved by further developing and testing the 
techniques using using non-linear techniques, including neural networks, genetic 
algorithms, and non-linear regression5.  
 
Notice that the work of the Dynamic density program is ongoing. Some of the studies 
reported elsewhere (e.g. the work of Chatterji & Sridhar, Wyndemere, and 
Kopardekar) were actually conducted under the umbrella of Dynamic Density. As of 
this writing (c.f. Masalonis, Callaham & Wanke, 2003), the program has yielded four 
separate complexity formulas, one from each of the main research teams. 
 
 
Breitler, Lesko and Kirk (1996)— Cited in Kopardekar’s (2000) review of the then-
complete list of Dynamic Density factors, these researchers added the following 
relevant factors to the discussion: 

• Number of sector sides; 
• Number of main jet routes through a sector; 
• Number of airports in the airspace; 
• Numbers of Letters of Agreement (LOAs) for each sector; 
• Number of entries (within last 15 minutes); 
• Average altitude within the sector. 

                                                 
5 based on personal communications with members of the dynamic density team, it seems 
that there has been interest in broader use of  non-linear (e.g. neural network) analysis (cf. 
Chatterji & Sridhar, 2001). 
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Correlations with operational errors were quite low, the highest being subjectively 
rated “Ease of Transitioning” (r=.231, or less than 5% of explained variance). The 
only three significant correlations were found for ease of Transitioning, Number of 
fixes/airports; and Number of LOAs. In general, correlations coefficients were under 
0.1 (i.e., less than .01 of variance explained).  
 
 
Pawlak et al (1996), responding to the perceived over-reliance on behavioural 
indicators of ATC complexity, proposed a simple cognitive framework, involving the 
continuous cycle of formulating plans (evaluating the impact of a given control 
action), implementing the plans, monitoring the situation and evaluating the 
effectiveness of the plan (c.f. section 4.2). Using this framework as a basis, they 
developed an “approach for measuring and evaluating the perceived complexity of an 
air traffic situation, with an emphasis on the traffic characteristics that impact the 
cognitive activity of the controller”. This involved interviewing a large number of 
controllers to sample their perceptions of complexity in a number of different 
situations. They identified the following factors as influencing perceived air traffic 
complexity: 

• Special Use Airspace; 
• Proximity of Potential Conflicts to Sector Boundary; 
• Aircraft Density; 
• Number of Facilities6 ; 
• Number of Aircraft Climbing or Descending; 
• Number of Crossing Altitude Profiles; 
• Variance in Aircraft Speed; 
• Variance in Directions of Flight; 
• Performance Mix of Traffic; 
• Winds; 
• Distribution of Closest Points of Approach; 
• Angle of Convergence in Conflict Situation; 
• Level of Knowledge of Intent of Aircraft; 
• Separation Requirements; 
• Co-ordination Required; 
• Controller abilities; 
• Equipment available. 

Using the verbal protocol technique, controllers were asked to express their decision-
making technique with respect to the traffic situation in a simulation environment. 
Following this, it was intended to produce a list of weightings for the perceived 
complexity produced by each factor and to validate this scale using simulations.  
 
Chatterji & Sridhar (1997, cited in Kopardekar, 2000)— this (apparently-still) 
unpublished NASA Ames manuscript includes the following complexity factors: 

• Maximum terrain elevation; 
• Usual cloud ceiling; 
• Volume of airspace available; 
• Number of merging points; 
• Number of neighbouring sectors that hand off traffic; 
• Number of neighbouring sectors that accept handed off traffic; 
• Number of sector operating procedures; 
• Number of navaids available; 

                                                 
6 This factor is not further defined, so it is not clear whether this refers to, for instance, number 
of adjacent centres. 
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• Aircraft mix; 
• Sector boundary proximity; 
• Reserved airspace proximity; 
• Horizontal proximity; 
• Vertical proximity; 
• Time-to-go until conflict;  
• Groundspeed variability; 
• Shape of traffic geometry. 

Of these, the first two seem less relevant to enroute control. It seems that (at least 
some of) these factors have by now made their way into the Dynamic Density index, 
as discussed shortly. 
 
 
Pawlak & Brinton (1997) presented the results of this research in “free flight” 
simulations including controllers’ rating of perceived complexity, subjective opinions 
of what additional technology or information the controllers would like to see to bring 
complexity to within “controllable limits” (e.g. timely intent information, accountability 
of the pilots in cases of separation violation, training etc.). However, whilst these 
reports present a possible framework, it does not fully present the relationship 
between the cognitive processes and how differing levels of complexity affect them, 
nor does it present the actual quantitative results of the weighting. For this reason, it 
is not yet possible to identify the (probably fuzzy) boundary between “controllable” 
and “uncontrollable”.  
 
 
Delahaye and Puechmorel 2000— responding to perceived weaknesses in the 
dynamic density and cognitive modelling approaches to complexity modelling, they 
search for intrinsic complexity factors, which derive directly from the location and 
speed of aircraft. These approaches fall into two classes: geometric and entropy-
based.  Based on their report7,  Kolmogorov Entropy for four types of convergences 
(again, lower entropy means higher predictability, and the lower bound for entropy is 
zero) were as follows: 
 

• Parallel Flow  0 
• Random Flow  8274 
• Right Angle Crossing 64173 
• Right Angle Crossing 487267 

Notice that parallel flows, with an entropy of zero, are completely predictable. For the 
controller, there is no risk of conflict. What this author finds puzzling is that entropy 
should be so low for random flows—one would think that they represent by definition 
the greatest unpredictability.    
 
 
EUROCONTROL (2000) reported on a comparison of EEC Bretigny and NATS UK 
approaches to evaluating traffic complexity. NATS relied on ATS output (i.e. service 
provided) and EEC used ATS workload as its criterion. WOODSTOCK provided the 
following complexity indicators 

• Traffic counts; 
• Traffic density; 
• Number of sector entries per flight; 

                                                 
7 There is a slight contradiction in the paper (between text and figure contents). As of this 
writing, the main author has not responded to a request for clarification. 
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• Number of conflicts; 
• Measures of flight level changes; 
• Average distance flown per aircraft; 
• Traffic distribution by aircraft type. 

Workload results (in terms of task frequency and duration) were assessed. 
 
Workload 
ACC 

Sector 
entries 

Time per 
sector 
entry 

Clearances Time per 
clearance 

Conflicts Time per 
conflict 

Real 
workload 

Actual Actual Actual Actual Actual Actual 

Standard 
complexity 
workload 

Standard Actual Standard Actual Standard Actual 

Standard 
equipment 
workload 

Actual Standard Actual Standard Actual Standard 

 
 
The study concluded that “Standard Equipment Workload,” which gives the workload 
assuming controllers had standard equipment and procedures (see the 
accompanying table) was the most appropriate way to assess complexity in 
European centres. The study also concluded that sectorisation heavily influences 
workload as computed by the EEC model.  
 
 
Majumdar & Ochieng (2000) performed a series of multivariate statistical analyses 
(Multiple regression; Principal Components Analysis, and Factor analysis) on data 
from a total of 57 European sectors. Data were compared against European Airspace 
Model (EAM) workload. Among the 28 factors were: 

• average instantaneous count; 
• average navigational speed; 
• bi-directional concentration; 
• climb-cruise-descent profile; 
• climb-cruise-flight profile; 
• continuous descent profile; 
• continuous climb profile; 
• continuous cruise profile; 
• cruise-descent flight profile; 
• difference in upper and lower FLs; 
• flights exiting in climb; 
• flights entering from same ATC unit; 
• flights entering from another ATC unit; 
• flights entering in climb; 
• flights entering in cruise; 
• flights entering in descent; 
• flights exiting to another ATC unit; 
• flights exiting to same ATC unit; 
• flights exiting in cruise; 
• flights exiting in descent; 
• flights in busiest 30 minutes; 
• geographical concentration of flights; 
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• mean distance travelled; 
• mean flight time; 
• total climb flight time; 
• total cruise flight time; 
• total descent flight time; 
• vertical concentration. 

Results varied greatly across sectors. The study concluded that each sector has 
unique factors influencing its workload, and that new analysis methods might be 
warranted, including: weighted regression analysis, time series analysis, maximum 
likelihood analysis, spatially auto-correlated regression analysis, and non-linear 
regression. 
 
 
Pfleiderer (2000) used Multidimensional Scaling (MDS)8 to explore the notion of 
aircraft mix as a contributor to perceived workload. Aircraft mix is one of the often-
cited (but often poorly-defined) complexity factors. In this study, controllers were 
asked to identify weight class, engine type and engine number, as well as provide 
estimates of cruise speed, climb rate, and descent rate, for a number of  selected 
aircraft.  The report concluded on the basis of MDS that controllers use a number of 
cues, obtained from a number of sources, to generate performance envelope 
stereotypes for aircraft. Results showed that these stereotypes are best captured 
through the use of: 
• Aircraft engine type (i.e., piston, turboprop, jet) and  
• Aircraft weight class (i.e., small, heavy, large) 
 
Manning et al (2000; 2001) tried to identify objective (observable) measures of 
controller activity, as a proxy for controller workload. The researchers admit 
(Manning, 2000) the main limitation of such measures: although easy to 
systematically collect, they might not capture the richness of controller workload. 
Using a tool called POWER (Performance and Objective Workload Evaluation 
Research). Using two high altitude and two low altitude sectors, they compared 
POWER ratings with expert ratings of controller workload. Complexity factors were as 
follows: 

• Number of controlled aircraft; 
• Average control time; 
• Heading, sped and altitude variation; 
• Handoff count; 
• Handoff time-to-accept; 
• Alert count; 
• Altitude changes; 
• Data entry errors. 

The researchers found that complexity was not related to any of the observable 
POWER measures. In particular, Manning et al. (2001) note that complexity, 
performance and workload were completely unrelated to: Time between hand-off 
initiation and acceptance; Number of data entry errors; Number of data entries; 
Number of route displays; Number of track reroutes; and number of strip requests. 
They suggested that certain POWER measures might have been related to sector 
static characteristics because of the structure of the chosen sectors. They further 
suggested that future work distinguish between static and dynamic sector 
characteristics. 

                                                 
8 MDS can be thought of as a more general alternative to factor analysis  
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Schaefer et al (2001). Extending the work into Dynamic Density and the Tactical 
Load Smoother (TLS), this team reports on a study in which interviews with traffic 
managers were used to identify the following complexity factors in CANAC: 
• Conflict position (i.e. is it close to sector boundaries?); 
• Phase of flight; 
• Height of conflict (a conflict in an upper sector is generally harder to solve due to 

the constrained airspace. The restricted number of available flight levels prevents 
vertical resolutions); 

• Airspace structure (i.e. route definition and separation of flows); 
• Weather; 
• Traffic mix; 
• Speed variation; 
• Type of conflict (as it relates to time-to-go for resolution); 
• Callsign density (i.e., callsign confusion potential: a large number of callsigns 

from the same carrier—e.g. KLM— creates potential misunderstanding and RT 
confusion); 

This last factor, callsign density, appears a unique contribution of the team. 
 
 
Kirwan, Scaife and Kennedy (2001) evaluated complexity in London area enroute 
and approach control. On the basis of group judgement exercises, they identified the 
top 12 complexity factors in UK airspace (for both enroute and approach) as follows: 

• Volume/ flow/ growth rate of traffic - including the effect of 'bunching' of traffic 
at peak periods; 

• Airspace design - including sector shape, number of levels in the sector, route 
structure and number of crossing points; 

• Shared understanding - e.g. between adjacent sectors; between different 
ATM functions; etc.; 

• Communications & co-ordinations - relating to time pressure on 
communications, both with radio-telephony (controller -pilot) and other calls 
on 'landlines';   

• No soft option - lack of sufficient non-busy times to think and be proactive - 
related to so-called 'over-loads';  

• Procedures - some procedures seen as overly complex or even clumsy, or 
with a high rate of change of sector design; 

• Presentations to sector - handing over aircraft from one controller/sector to 
another (e.g. too early or too late, etc.); 

• Human resources - relating to staffing issues; 
• Non-standard flights - concerned with unusual traffic such as survey aircraft 

and training aircraft, for example; 
• Aircraft  performance - some areas have a large range of aircraft performance 

capabilities, from 'lows-and-slows' to fast-climbers; 
• Military - largely relating to the unavailability of military danger areas for civil 

usage given the desire for increased civil capacity;  
• Weather  - e.g. turbulence, wind shear, thunderstorms, and weather 

interference for radio-telephony; 
On the basis of this, the authors presented a complexity checklist to assist with 
airspace design. The 23 items from this checklist were as follows: 

• have climb-throughs been minimised? 
• Is there a maximum of one conflict point in the sector, being a 90 degree 

conflict point, and located away from the edge of the sector? 
• Has number, location and orientation of holds been optimised? 
• Has number of levels been optimised? 
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• Have intersecting corridors been reduced? 
• Has traffic been standardised as far as possible? 
• Is the sector long enough given the route profiles (e.g., long enough for climbs 

and descents)? 
• Can a ‘dual carriageway’ concept be implemented where possible? 
• Have opposite direction, head-on, and contra-flow traffic situations been 

avoided? 
• Have speed limits and controls been used optimally? 
• Has route complexity been minimised (e.g., not having routes at all points of 

the compass)? 
• Have inbounds and outbounds been separated? 
• Have conflicting departure patterns from two adjacent airports been avoided? 
• Are associated procedures clear and straightforward? 
• Are sector splits even? 
• Have stepped SIDs been avoided? 
• Have high performance SIDs been considered? 
• Have funnelling and choke points been avoided/minimised? 
• Have inbounds been based on reasonable and realistic aircraft  performance 

profiles, rather than optimal ones? 
• Have too many reporting points been avoided? 
• Have environmental constraints been considered and their impact on 

complexity and workload minimised? 
• Have knock-on effects onto adjacent sectors been calculated and assessed? 
• Have plans adequately forecast the traffic increases, and will the design still 

work if these have been significantly under-estimated (e.g., by 20-40%)? 
 
Chatterji and Sridhar (2001)— recognised the limitations of linear complexity 
formulations (i.e. single linear combinations of factors into a single regression 
formula). Their innovative approach therefore relied on the use of neural networks to 
non-linearly relate factors. The goal was to train the network using a sample of data, 
and validate performance of the network using another subset. Twelve hours of 
enroute data were analysed, and controller workload (rated on a 1-3 scale every 120 
seconds) was compared to the influence of the following sixteen factors. 

• Traffic density, proportional to the historical maximum for that airspace; 
• Number of climbing aircraft, proportional to the historical maximum; 
• Number of level aircraft, proportional to the historical maximum; 
• Number of descending aircraft, proportional to the historical maximum; 
• Average weighted horizontal distance between aircraft; 
• Average weighted vertical distance between aircraft; 
• Average minimum horizontal distance between aircraft; 
• Average minimum vertical distance between aircraft; 
• Minimum horizontal separation for an aircraft pair; 
• Minimum horizontal separation for an aircraft pair; 
• Number of aircraft within conflict timeframe; 
• Average time-to-go to conflict; 
• Smallest time-to-go to conflict; 
• Groundspeed variation between aircraft; 
• Groundspeed variation, proportionate to mean airspace groundspeed; 
• The total conflict resolution difficulty based on time-to-go. 

Inputs to the neural network were the sixteen complexity factors, and the output was 
the workload ratings. 80% of the entire data set was used to rate the network, the 
remaining 20% for testing the predictive value. To evaluate the impact of different 
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factors (and combinations), 10 different sets of factors were used for training the 
network, from the simplest (traffic count only) to all sixteen. Validating, with a neural 
network, relies on feeding the trained network a new set of data, and to see whether 
the network can classify a new traffic pattern as low/medium/high (in this case) 
correctly (i.e., the same as a controller).  
 
Results show that the predictive value of traffic count is useful mainly at low traffic 
levels. Their “simplest” trained network, relying only on traffic count, was able to 
correctly classify low workload patterns 99% of the time. For patterns rated medium 
and high, however, correct classification fell to only 54% and 11%, respectively. The 
authors speculated that this poor classification performance was a data artefact due 
to the small number of medium and high complexity training samples: Of the 2065 
training samples, 1714 (83%) were low workload samples, 306 (15%) were medium, 
and only 45 (2%) were high. An alternative explanation of these results, however, 
centres on potential shortcomings in the traffic count measure itself. As other authors 
have speculated, the traffic count measure is a poor predictor of workload.  It seems 
possible that predictive value of the measure would differ across the range of 
possible workload. For instance, whereas low workload might correlate well with 
traffic load, higher workload relates to more factors than simply number of aircraft on 
frequency.  
 
Evidence favouring this second explanation was seen in the fact that classification 
performance improved significantly when the final six factors above (relating to 
conflict detection and resolution) were considered. The researchers concluded that 
the difficulty of detecting and resolving conflicts has a strong bearing on controllers’ 
subjective workload. In summary, the neural network achieved its best classification 
performance when using the entire set of 16 factors. 
 
The work of Chatterji and Sridhar (2001) seems notable for at least three reasons. 
First, it recognises the non-linear nature of the interaction between complexity 
factors, and so adopts a non-linear (neural network) approach to their analysis. 
Second, it explicitly recognises the limitations of using observable behaviour, rather 
than controller subjective response. Perhaps most importantly, however, it seems 
their work incorporates cognitive aspects into its choice of traffic geometry factors. 
For example, their use of (horizontal and vertical) minimum distance as complexity 
factors recognises that a single pair of proximate aircraft can force attention 
tunnelling, a demanding situation. Further, their work considered both the 
convergence angle and time-to-go (Chatterji & Sridhar, 1997) in defining complexity 
of pending conflict situations9. 
 
Histon et al (2001), Histon et al (2002)  MIT researchers, working together with 
CENA/ENAC Toulouse, recognised that traditional geometric approaches to 
complexity have tended to overlook factors that contribute to complexity. Consistent 
with the work of Pawlak (Wyndemere, 1996; Pawlak et al., 1996; Pawlak & Brinton, 
1997) they noted the importance of internal factors (e.g. controller strategy), as well 
as external factors (such as transient weather effects) on perceived complexity. 
Perhaps their most important contribution to the debate was the attention they paid to 
underlying structure, and the notion of structural abstractions, which they feel 
controllers use to understand and simplify a traffic pattern. 
 

                                                 
9 The work of Chatterji & Sridhar (2001) might have overlooked the importance of controllers’ 
subjective response to shallow convergence angles (c.f. section 10.7) 
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Based on live observations and focused interviews with controllers (terminal and en 
route) in US, Canada, and France, the team identified a series of complexity factors. 
Although there was no attempt to rank the factors, the team did note that the group of 
factors fell into three main categories, which they termed: Airspace, Traffic, and 
Operational.  Of the many factors identified by the team, the following were those 
related to structural elements: 

• Sector dimensions (shape, size, and “area of regard10”); 
• Spatial distribution of airways and navaids; 
• Standard flows (number; Orientation relative to sector shape; Trajectory 

complexity; Interactions such as crossing points and merges); 
• Co-ordination required with other controllers (Point outs; handoffs); 
• Clustering of aircraft; 
• Location of closest approach point in relation to sector border, merge point, 

etc; 
• Sector transit time; 
• Buffering capacity (with respect to traffic flow); 
• Aircraft in holding pattern; 
• Activation of Special Use Airspace; 
• Noise abatement procedures. 

Based on their analysis, the researchers created a generalised model of structure 
and complexity. This model noted the role of three simplifying abstractions ( standard 
flows, groupings and critical points) that drive the controller’s situation awareness 
(i.e., the ability to perceive, comprehend, and project future state of traffic). 
 
The team’s work into structural elements appears to be ongoing. Experimental 
validation of the Critical Points abstraction  was carried out using a simplified ATC 
task (and university students) in which speed commands were used to merge traffic 
streams (Histon et al, 2002). As expected, proximity of critical points was associated 
with higher workload (using the Cooper Harper rating scale), number of separation 
violations, and average speed change per aircraft. Beyond validation work, the team 
also intends to incorporate the notion of structural abstractions into a complexity 
model. This effort too appears to be ongoing. 
 
Athenes et al (2002)—As of this 2002 report, the team had not progressed to 
empirical work. Nonetheless, their approach seems valuable in that it explicitly 
responds to the following noted shortcomings of previous work, including 

[1] An over-reliance on linear techniques, when the authors note the 
relationship between complexity and workload is a non-linear one; 
[2] Disregard for auto-regulation of controller workload—that is, that changes 
in strategy (primarily related to time management) can allow controllers to 
modulate the impact of complexity drivers and, hence, perceived workload; 
[3] Pre-occupation with problem solving, as opposed to the more relevant 
perceptual and decision making aspects of controlling, as sources of 
workload. 

 
Similar to the earlier notion of Hancock, Chignell & Kerr (1988), they identify 
uncertainty and time pressure as two elements of a speed-accuracy trade-off 
controllers demonstrate in regulating workload, and which is captured in their 
proposed “Traffic Load Index” (TLI). In their view, TLI can be determined for any 
given aircraft as a function of time pressure (urgency) and uncertainty (which they 
                                                 
10 Depending on the nature of traffic flows into and within the sector, the effective area of 
regard might extend well beyond the airspace boundaries (Histon et al., 2001) if, for instance, 
the controller must monitor traffic well up/down stream. 
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term ”gravity,” ranging from slight suspicion to evidence). Preliminary work suggests 
that TLI correlates better with NASA TLX (subjective workload ratings) and 
physiological workload indicators than does simple traffic count. 
 
In summary, the work of Athenes et al (2002) is notable in that it is one of only a few 
(Histon et al, 2000 being another) that specifically addresses controllers’ perceptual 
and decision making strategies, and how controllers themselves regulate the 
transformation of complexity and taskload into workload.  Unfortunately for COCA, 
applicable results still seem some time off.  
 
Kopardekar and Magyrits (2002)--  summarised the three phases of the Dynamic 
Density program. Phase I consisted of a Pilot Study to refine data collection 
procedures. Results of Phase I showed that controller and supervisor ratings were 
highly correlated (although supervisors tended to rate complexity higher), and that 
between-controller and between-supervisor ratings also correlated highly. In Phase II 
(the Data Collection Study), operational data were gathered from four en route 
centres (Atlanta, Cleveland, Denver, and Ft Worth). A total of 6480 complexity ratings 
were obtained. Phase III consisted of the Dynamic Density metric validation. This 
was done using regression analysis with the total Dynamic Density metric set. The 
focus was on the usefulness of both instantaneous and predicted (future) complexity. 
 
Their overall conclusions were that the Dynamic Density metrics showed promise, 
and performed better than simple aircraft count (especially for predicted complexity). 
Two concrete suggestions were that [1] non-linear techniques be used with the data 
set, and [2] that fine tuning required more future experimental work to fine-tune 
weights, followed by [3] operational validation with a prototype metric. 
 
Koros et al. (2003) recently reported on a field study of complexity in ATC towers.  In 
the study, controllers from six control towers rated 29 complexity factors from the 
perspective of local and ground control. Factors were grouped into one of nine 
categories: Physical factors; Airspace characteristics; Weather; Ground operation; 
Equipment factors; Individual factors; ATC procedures; Distractions; and Training. 
Specific factors relevant to enroute operations are as follows:  

• Traffic volume 

• Aircraft performance differences 

• Emergency operations 

• Special flights (e.g., medical flights, helicopters, etc.) 

• Overflights 

• Unfamiliar pilots 

• Pilots weak mastery of English 

• Controller fatigue 

• ATC procedures 

• Equipment distractions (e.g. altitude alarms) 

• Other distractions (not ATC related) 

• On-the-job training 
Results were found to be both site- and position-specific. Across all sites and across 
both positions, high traffic, frequency congestion, and runway/taxiway configuration 
were the leading complexity factors. Traffic density was found to influence workload 
(number of tasks, communication, co-ordination). Runway and taxiway configurations  
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(some sites had more than 23 configurations possible) influence co-ordination and 
communication demands. 
 
The Koros et al. (2003) study seems notable in at least three respects. First, it 
introduced several new factors to the literature. Second, it expanded the range of 
indicators to include training, pilot language facility, and distractions. Finally, whereas 
most of the literature concerns the enroute environment, this provides some 
candidate factors for evaluating ground and approach complexity. 
 
Masalonis et al (2003)--  In two recent presentations (Masalonis, Callaham, Figueroa, 
& Wanke,2003; Masalonis, Callaham, & Wanke, 2003) researchers from MITRE 
CAASD review their work currently being carried out under the Dynamic Density 
program. They are particularly interested in usefulness of complexity measures for 
TFM (Tactical Flow Management) decision support, with a 120 minute time horizon. 
These researchers evaluated each of the four Dynamic Density equations in terms 
of: 

• Ability to predict subjective complexity ratings, at up to 120 minutes 
• Predictability 
• Face validity (simply whether a test “looks valid” to examinees, and other 

untrained participants); 
• Redundancy (via semantically driven factor analysis) 

The researchers chose the following subset of 12 factors from the Wyndemere, FAA, 
and NASA set of Dynamic Density measures (the final eight were taken directly from 
the Wyndemere work): 

• Number of aircraft in sector 
• Sector volume (nm3) 
• Speed Change (number aircraft with airspeed change > 10 kts/.02Mach within 

2 minutes) 
• Aircraft count, normalised 
• Aircraft density per sector, normalised 
• Aircraft proximity pairs (within 8nm, and within 13 nm) 
• Convergence angle (for aircraft pairs within 13 nm) 
• Conflicts predicted (number of proximate pairs predicted to conflict) 
• Conflict sector boundary proximity (number of conflict pairs close to sector 

boundary) 
• Altitude change (number of aircraft with an vertical speed > 500 fpm) 
• Aircraft Distribution (relative to sector structure) 

Multiple regression was used to assess, for various samples of airspace, how well 
the 12 factors predicted controllers’ complexity ratings. Structured interviews were 
also used to cross-check the results of multiple regression analysis.  Operational 
interviews with controllers from five sectors showed that the following factors had the 
highest factors weightings (in descending order) on controller rated complexity (on a 
1-5 scale)11: Peak number of aircraft (4.63); Portion of sector unavailable due to 
weather (4.63); Weather at busy airports (4.63); Merging/crossing traffic (4.50); 
Influence of convective weather on adjacent sectors (4.38); Total number aircraft 
(4.25); Departure push near sector (4.25); and arrival push near sector (4.13). Eight 
additional factors showed smaller weightings. 
 
In their results, Masalonis, Callaham & Wanke (2003) noted sector-specific 
differences in the predictive value of the factors, though these differences are small 

                                                 
11 these factors were apparently chosen from a broader literature review, and so do not map 
exactly onto the Dynamic Density metrics (above)used for the quantitative analysis. 
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enough that a generalised set could be applicable to multiple airspace, at least in the 
near time (it is not clear what is meant by this “near term” distinction). In their 2003 
Budapest presentation (Masalonis, Callahan & Wanke, 2003) they note that a centre-
specific complexity model performed better than a general model for each of the four 
sectors evaluated (the difference was statistically significant p<.01 for three of the 
four). In summary, and although they seemed more optimistic than some researchers 
(e.g. Kopardekar: Manning) about the potential for a unified model, they do speculate 
that a multidimensional representation of workload might be more useful than a 
single equation combining all factors. 
 
The work of Masalonis et al provides some possibly useful criteria for evaluating 
candidate factors. For instance, their concept of face validity is built on the rationale 
that:  

• Adding another aircraft should never decrease complexity;  
• That increasing speeds and reducing airspace should never decrease 

complexity;  
• That moving an aircraft to increase its distance from all other traffic should 

never increase complexity (the author finds this assertion questionable); 
• That the factor should be independent of orientation; and  
• That a small change in airspace should never cause a large change in 

complexity. 
Further, their criteria for evaluating redundancy assume that low inter-factor 
correlations (in statistical terms, that each factor contributes uniquely  to the 
regression equation) is desirable. 
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6.2 Data Collection Methods 

 
Pawlak et al. (1996) identified three distinct phases of constructing an ATC 
complexity model: Elicitation (initial identification of complexity indicators); 
Refinement of the indicators; and Validation of the model. This seems a useable 
framework to discuss the range of methods that have been used in collecting data on 
air traffic complexity. Notice that four general approaches have been used in studying 
ATC complexity: Experimental (generally simulation or laboratory) studies (Stein, 
1985; Manning et al., 2000); Field research relying on Observational or Interview 
studies (Mogford et al., 1993; Histon et al, 2002), and Analytical studies (Soede et 
al., 1971).  Some have used a combination of these approaches (Arad, 1964; Pawlak 
et al., 1996).  
 
The following table highlights the main techniques that have been used to collect, 
refine and validate indicators of air traffic complexity (and the phase—Elicit, Refine or 
Validate—at which they seem useful). With slight variations, there seems to have 
been only a basic handful of data collection techniques used to study complexity. 
 
Appendix B, which does not limit itself to previous ATC complexity research, provides 
a fuller list of potential data collection techniques.  
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Table 1. Data collection methods previously used to study ATC 
 
Class Technique Sub-technique(s) Phase 

E=Elicitation 
R=Review 
V=Validation 

References Notes 

OBSERVATONAL      
 Field Observations   E, R, V Averty et al. (2003)  
 Familiarisation  E Histon et al, (2002)  
 Videotape analysis  E, R, V Bailey & Willems (2002)  
 Over-the-shoulder 

assessments 
 E, R, V Pawlak et al. (1996); Sollenberger  

et al (1997) 
 

 Behavioural analysis  E, R,V Manning et al (2000;2001); Bailey  
& Willems (2002) 

incl. Behavioural 
checklists (Manning 
et al, 2000) 

  Activity analysis  Bailey & Willems (2002)  
  Communication analysis  Bailey & Willems (2002)  
  Voice command 

analysis 
 Davison (2002)  

INTERVIEW      
 Expert judgement sessions  E, R Kirwan et al (2001)  
 Rating and ranking exercises  E, R Rodgers et al (1998); Schaefer et al 

(1999);Kirwan et al (2001); Koros 
(2003) 

incl. paired 
comparisons 
Delahaye & 
Puechmoreal (2000) 

 Focus groups  E, R Delahaye & Puechmoreal (2000); 
Histon et al (2002) 

 

 Critical decision making  E, R Laudeman et al (1998); Meckiff  
et al (1998) 

 

 Verbal protocol analysis  E, R Pawlak et al. (1996) Incl. retrospective 
verbalisation 

 Structured interview  E, R Ahlstrom (2001)  
 Semi-structured field interview  E, R d"Arcy & Della Rocco (2001)  
 Workload ratings  R, V  e.g. ISA, TLX, ATWIT 
  Instantaneous    
  Post session    
 Questionnaires / Surveys  E, R Laudeman et al (1998)  
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Table 1. Data collection methods previously used to study ATC 
 
Class Technique Sub-technique(s) Phase 

E=Elicitation 
R=Review 
V=Validation 

References Notes 

EXPERIMENTAL/ 
QUASI-EXPERIMENTAL

     

 Static simulations  E, R Boag (2002)  
 Small scale simulation   Pawlak et al. (1996)  
 Shadow mode trials  R, V   
 Physiological measurement  R, V Averty et al (2003);Laudeman et  

al (1998); Chatterji & Sridhar (2001)
too intrusive for 
operational settings? 

  Eye tracking measures   Källqvist (2002); Stein (1992)  
  Heart rate measures  Brookings et al. (1996)  
  Brain activity measures    
 Task performance  R, V   
  Primary task 

performance 
 Wierwille & Connor (1983)  

  Secondary task 
performance 

 Metzger & Parasuraman (1999)  

ANALYTIC      
 Task Analysis   E, R Seamster et al (1993); Boehm-

Davis et al 
includes Cognitive Task 
Analysis 

 Cognitive Modelling  V Blom et al. (2001) e.g. IPME, MIDAS, 
PUMA 

 Monte Carlo simulation  V Krozel & Peters (2000)  

 Analysis of operational data  R, V Rodgers et al (1998); Gosling et al 
(2003) 

e.g. incident review 

 Analysis of modelled workload  R, V Eurocontrol (1996) e.g. EAM simulation 
model of workload 
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6.3 Workload Assessment Methods 

 
It seems agreed from the literature that controller workload is an appropriate criterion 
measure for air traffic complexity. This section, therefore, reviews the techniques that have 
been used to assess workload, particularly in ATC settings. 
 
Various measures have been used to assess ATC workload. These are generally categorised 
as subjective, behavioural or physiological12.  Within each category, there are a number of 
specific indices available. A review of the various workload measurement techniques (and their 
relative trade-offs in terms of sensitivity, cost, intrusiveness, etc.) is beyond the scope of the 
present paper (several thorough reviews exist (cf Meshkati, Hancock & Rahimi, 1990; Kramer, 
1991; Hilburn & Jorna, 2001). Following are some examples of workload measures that have 
been used in the past. 
 

 
Subjective 
NASA TLX (Brookings & Wilson, 1994) 
Air Traffic Workload Input Technique (ATWIT (Leighbody, Beck & Amato, 1992)) 
Subject Matter Expert / Over-the-shoulder ratings (Schaeffer, 1991) 
Instantaneous Self Assessment (ISA) technique (Whittaker, 1995, Eurocontrol, 
1997). 
 
Behavioural 
Number of control actions (Mogford, Murphy & Guttman, 1993) 
Communications efficiency (Leplat, 1978; Geer, 1981) 
Communication time, message length (Morrow, 1993) 
Flight data management (Cardosi & Murphy, 1995) 
Inter-sector co-ordination (Cardosi & Murphy, 1995) 
Decision and action frequency (Schmidt, 1976) 
 
Physiological    
EEG, EMG and EOG (Costa, 1993) 
Heart rate measures (Brookings & Wilson, 1994) 
Eye blink rate (Stein, 1982; Brookings & Wilson, 1994) 
Respiration (Brookings & Wilson, 1994) 
Biochemical activity (Zeier, 1994; Costa, 1993) 
Pupil diameter (Hilburn, Jorna & Parasuraman, 1995) 
Eye scanning entropy ( Hilburn, Jorna & Parasuraman, 1995) 
Visual fixation frequency (Stein, 1992) 
 

                                                 
12  A fourth method, workload modelling, is used during system development to predict workload 
imposed by future systems.  The British PUMA system (Houselander & Owens, 1995) is one example.  
One noted strength of PUMA is its reliance on an underlying model of human attention (Multiple 
Resource Theory (Wickens, 1992)), although the same caveats about the use of behavioural data—
PUMA considers task completion times-- still apply. 
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Workload measures in ATC: some empirical studies. 
 
 
Overall, ATC workload evaluations have tended to rely on subjective measures.  Although 
the use of subjective measures is attractive (they are inexpensive, easily collected, and 
perhaps offer better controller acceptance), they carry some important potential limitations, 
such as memory effects (Manning et al 2001), unwillingness to report (Hilburn & Jorna, 
2001), and other biases.  
 
Many studies in the past have attempted to relate overt behavioural measures (e.g., total 
radio communication time (Morrow, 1993)) directly to controller mental workload (Manning et 
al., 2001; Bruce et al., 1993).  This use of behavioural measures is attractive at first glance, 
given that they can often be related directly to operational performance.  A number of ATC-
relevant tasks can be used as embedded indicators of ATC workload. For instance, the 
communication demands of a new ATC system (expressed as, say, total microphone key 
press time per hour (Hilburn & Nijhuis, 2000) appear to relate directly to both how hard the 
controller is working, and how efficient the system can be expected to perform. Schmidt 
(1976) developed an index of controller difficulty that relied on task execution time and 
frequency of decision or action forcing events. From this a list of seven tasks were identified 
as the most demanding (cf. section 6.1). 
 
As has been noted with respect to behavioural measures of complexity, however (Pawlak et 
al., 1996), overt behaviour does not necessarily represent underlying controller effort 
(Newman et al., 1993). Much of the “workload” in ATC, after all, consists of non-observable 
mental activity. Controllers can, again, employ compensatory strategies— such as vectoring 
aircraft into a holding stack to “buy time”—that maintain the external appearance of steady 
activity (Sperandio, 1971; Koros et al., 2003).  
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7. LESSONS LEARNT  

 
This section presents a summary of lessons learnt, regarding the identification of complexity 
factors, as well as data collection methods and workload assessment methods. Section 10 
presents a summary of overall conclusions, and general lessons for COCA. 
 

7.1 Workload as a Criterion Measure of Complexity  

 
Ultimately, the COCA complexity model must be judged by its ability to predict some agreed 
criterion measure. The literature clearly suggests that controller workload is the best 
available criterion, despite the influence of other task and operator-related factors. 
 

7.2 Subjective Versus Objective Measures of Workload  

 
One area of debate within the workload assessment community is the relative value of 
objective (behavioural or physiological) measures and subjective techniques (such self-report 
measures such as ATWIT, ISA, and NASA TLX). There are several known limitations of 
subjective techniques, including: Potential memory effects if used post-session (Manning et 
al, 2001); Unwillingness to report damaging information (Kirwan et al., 2001); Context effects 
(Colle & Reid, 1998); Inaccessibility to skilled performance, and the sheer effort required to 
generate and collect self reports (Manning et al, 2001), all of which can bias the resulting 
data.    
 
Despite these potential problems, ATC research has generally relied on subjective workload 
measures. This is due to their attractive cost, ease of use, and face validity. There are at 
least two additional considerations that recommend their use in the COCA project. First, 
COCA will likely follow a course of progressive refinement in developing its complexity 
model. The initial steps in this process will rely on small scale exploratory studies, in which 
physiological measures seem unfeasible. At least initially, COCA’s emphasis should be on 
subjective workload measures. 
 
A second important advantage for COCA is that such subjective measures might better tap 
into the subjective nature of workload itself. That is, an objective workload measurement 
indicator (and some reliable physiological ones exist) can never take the place of a 
controller’s claim that workload has been reduced. Given the consensus view that workload 
is a subjective response to various inputs including, among others, traffic complexity, it is 
reasonable to investigate that response using subjective techniques and measures.    
 

7.3 Direct versus Indirect Measures of Complexity 

 
On a related point, there seems some disagreement in the literature on how reliably 
controllers can evaluate complexity. It seems widely agreed that cognitive complexity is a 
subjective phenomenon that is not directly observable. Nonetheless, there also seems 
consensus that proxy measures of complexity are valuable in determining what makes a 
controller’s job difficult and by how much (Mogford et al., 1995), or in revealing structural 
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abstractions controllers use to understand and simplify a given traffic pattern (Histon et al., 
2001; Histon et al, 2002). If justifiable, this view provides the same sorts of advantages as 
subjective workload techniques— namely, they are attractive (especially during initial stages 
of a progressive refinement process), and also might tap into the subjective nature of 
complexity assessment. For both of these reasons, it seems logical to consider the use of 
direct observational / interview techniques, at least initially. Such techniques could always be 
followed by more “complex” (and expensive) indirect data collection methods later, when the 
model is (hopefully) more sophisticated. 
 

7.4 Avoiding Self Report Bias 

 
One potentially useful distinction to maintain is that between static (e.g. the airspace proper) 
and dynamic (e.g. transient traffic characteristics) that have been noted by several 
researchers (Rodgers et al., 1998; Grossberg, 1989). It is reasonable to assume, for 
instance, that controllers are in the best position to provide ratings concerning the static 
factors surrounding complexity. Such reports would not be time critical, and could 
presumably be collected after a session without risk of memory effects (at least for familiar 
airspace).  Providing dynamic ratings, however, might prove more intrusive for the controller, 
and it is likely that an observer (be it a supervisor or another controller acting as over-the-
shoulder observer) would be better positioned to provide these. 
  

7.5 A Top-Down versus Bottom-Up Approach to Defining Complexity 

 
For at least forty years, researchers have wrestled with the notion of ATC complexity. The 
influence of certain traffic characteristics (e.g. traffic count, or weather) on ATC complexity, is 
relatively easy to conceptualise. What has proven a more intractable problem, however, is 
how to capture and quantify the influence of underlying traffic structure on complexity. Terms 
such as “organisation flow” (Arad, 1964) or “structural elements” (Histon et al, 2001;Histon et 
al, 2002) have been used to describe the emergent properties of the traffic geometry per se. 
Although it is recognised as an important contributor to perceived complexity, the concept of 
organisation flow has been left loosely defined (Rodgers, 1998).  
 
This search for these underlying structural or flow factors suggests that there are two 
fundamental approaches to defining ATC complexity. The first, which seems to have been 
more popular, is a bottom-up attempt to identify the constellation of relevant complexity 
factors (on the basis of say interviews or observation) from which a composite complexity 
formula can be constructed.  Conversely, a top down approach would start from a criterion 
measure of controller response, and attempt to identify which complexity factors contributed 
to this response.    
 
It would seem that a combination of the two approaches, might offer the most promise. The 
former could rely on eliciting all potential complexity factors, the second on controlled 
comparisons to evaluate how a criterion response (workload) varies with systematic 
manipulations of these factors (by the way, it is probably the greater experimental demands 
of the second approach that has made it less popular over the years). In short, if the likely 
range of potential complexity factors can be identified bottom up (and there is already a 
wealth of possible factors available from the literature), their effect can be assessed top-
down by starting with an accepted criterion—namely, controller workload. 
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7.6 Progressive Refinement of the Complexity Model 

 
Clearly no single indicator will capture the fullness of ATC complexity across all possible 
contexts. It is also argued, based on the literature, that no fixed set of indicators will apply to 
every airspace. Literature is clear on the potential for interactions, for instance on the basis of 
airspace (Pawlak et al., 1996); time of day (Kirwan 2001), equipment (Cheboud et al, 2001), 
etc. Refinement of the complexity model demands that it be applied to various types of 
airspace. 
 

7.7 Interview Procedures 

 
Studies have used interviews to elicit a variety of complexity-related information, such as the 
nature of the complexity factors, underlying decision making processes, and the relative 
importance of various types of information  (Koros et al., 2003). Gromelski, Davidson & Stein 
(1992), in reviewing the techniques for field data collection in ATC, noted that less-structured 
conversational interviews can improve data collection by allowing the interviewer to 

• Ask for examples to clarify a point; 
• Explore the meanings of various phrases respondents use; 
• Probe to ensure respondent understanding; 
• Observe body language; 
• Observe new topics raised by the respondent. 

 
This view fits with the Focus Group approach that is often used in social science research. 
Focus groups are a form of loosely structured group discussion. The chief strength of the 
focus group procedure is that it exploits the social interaction nature of group interview, and 
uses this interaction (including, for example, interplay and modification of opinion) as an 
integral source of data. Focus groups are most useful in identifying the range of views, 
opinions or concerns present in a group. For that reason, their use in COCA is probably most 
appropriate during initial phase of factor identification, rather than in the later validation 
phase. 
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8. A PROPOSED MODEL OF ATC COMPLEXITY AND WORKLOAD 

This section proposes a functional model of ATC complexity and workload that attempts to 
integrate the reviewed work on air traffic complexity and human information processing. This 
model distinguishes between taskload (or system) factors external to the controller, and the 
controller’s internal processes (Hilburn & Jorna, 2001).  Taskload consists of traffic 
complexity (which is driven by both airspace and traffic-related factors (Mogford et al, 1994; 
Mogford et al., 1995)) as well as by the demands of equipment, interface, and procedures 
(ibid.). 
 

 
Proposed model of ATC complexity and workload. 

 
 
Summed taskload is the input to the controller.  Controller activity (the “pinwheel” of the 
controller portion of the diagram) consists of four elements: Monitoring, Evaluating, 
Formulating decisions, and Implementing decisions (Pawlak et al., 1996).  In fact, these 
activities map well onto the traditional view of human information processing (Wickens, 
1980), which distinguishes between Input (or perception or stimulus), Processing (which 
encompasses both the evaluation and formulation of a decision), and Response. These three 
are abbreviated I, P and R respectively in the diagram.  
 
Each cycle of this I-P-R pinwheel has one of two outcomes-- either overt action (in which the 
controller acts on the taskload), or continuing the (non-observable) process of monitoring, 
evaluating, etc. “Implementation” in this sense can be deciding to postpone action (waiting to 
see what will happen). Again, observable activity does not capture all of a controller’s 
processing. 
 
In this model, controller workload is a response to this information-processing pinwheel—the 
demands of monitoring, evaluating, etc. However, the response is not a direct one, rather it is 
mediated by Performance Shaping Factors (PSFs) such as skill, fatigue, age, training, 
proneness to anxiety, etc. that can influence the resulting workload. Notice also that the 
influence of PSFs runs downstream (dashed arrows), through the allocation of attention to 
monitoring, evaluating/formulating, or implementing. For example, a controller might defer 
routine housekeeping tasks (e.g., not sharing turbulence reports with pilots), or might 
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combine tasks in parallel (e.g., through joint RT clearances). In this model, such adaptive 
strategies do nothing to moderate the complexity of the underlying task. This is an important 
element of the model, since it encompasses not only systematic biases (e.g. as in decision 
making and perceptual biases that can colour monitoring and evaluation, as mentioned 
earlier) but also individual differences.  PSFs are the noise in the complexity-taskload-
workload transform. The end result of this entire process is controller workload, which is a 
function of both task demands and the controller’s internal and subjective response to those 
demands.  
 
How does this model advance the work of COCA? The following five immediate lessons 
come to mind regarding what we can hope to measure, and how we should go about eliciting 
complexity factors and refining a model of cognitive complexity: 
• Observable behaviour is, again, a poor proxy for the workload of a controller, since many 

controller “activities” (e.g., evaluating, or deciding not to implement a response) are not 
observable; 

• Complexity is not only the sum of the taskload faced by a controller (other aspects 
include interface and individual differences for instance, and these will always exert an 
influence (cf. Section 9.12))); 

• Systematic and idiosyncratic biases will colour both the perception of workload, as well 
as the strategies brought to bear to maintain task performance; 

• The above points not withstanding 
• Although some studies have been confused on this point, individual operator factors 

(e.g., age, skill, etc.)are not complexity factors, and our search for complexity factors 
should overlook them; 

• Workload is an internal and subjective response (albeit one that is at least partially 
accessible through physiological indicators). 

 
It is believed that this functional model, while simple, fits both with what is known about 
human information processing and the literature on complexity and workload, and presents 
at least a passing level of face validity with respect to ATC operations. More importantly, it 
seems to afford a pragmatic way forward for the COCA project, and offer implications for 
what (and how) Complexity should be assessed in ATC.  
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9. GENERAL DISCUSSION 

This chapter attempts to highlight some of the chief lessons that have been drawn from the 
preceding literature review.  In most cases these lessons are based on the consensus view 
of the research community (as gleaned through the literature review). In others, they are built 
on an interpretation of past empirical work, through the lens of cognitive psychology. The 
following lessons are presented in no particular order. 
 

9.1 No Complexity Indicator is Context-Free 

There seems widespread agreement on the view that there is no single complexity indicator 
(or presumably composite of indicators) that applies equally well regardless of context. As 
Kirwan et al. (2001) noted, what works well in one setting might not work well in another site, 
or even at another time-of-day. The interactions between such factors can vary by site 
(Christien et al., 2003; Koros et al., 2003). Further, and despite of the admirable depth of 
their work, one report of Wyndemere’s work into ATC complexity indicators (Pawlak et al., 
1996) admits a large potential shortcoming: that their analysis was conducted on only one 
sector. The study goes on to concede that results might differ in another setting. Literature on 
NASA/FAA’s dynamic density research (Laudeman, 1998) also acknowledged that different 
dynamic density measures performed better for different facilities. Christien et al (2003) also 
noted that the coefficients in their linear workload formula were “not the same for all sectors.” 
Specifically, they note that, everything else equal, aircraft interactions will vary inversely with 
airspace volume. 
 

9.2 Complexity Factors Do Not Always Interact in a Linear Way 

On a related point, it seems agreed among several of the leading researchers in the field that 
one size can never fit all. What that means, in this case, is that no composite index 
composed of a linear combination of complexity indicators will adequately capture cognitive 
complexity of ATC in all contexts (cf. Athenes et al., 2002). A simple thought experiment is 
sufficient to illustrate the issue: Though traffic density (something as simple as aircraft per 
square kilometre13) is generally considered the best guess as to the taskload imposed upon a 
controller, it is easy to imagine an airspace in which traffic density per se has little or no 
bearing on the complexity of the controller’s task. Indeed, complexity is low for a sector in 
which traffic flows are predictable (e.g., traffic is evenly spaced in-trail, and aircraft maintain 
following distances), somewhat regardless of traffic density.  
 
Past attempts to assess ATC complexity have generally relied on linear combinations of 
individual complexity indicators (e.g., Pawlak et al., 1996). While the work of the Wyndemere 
group was commendable for its depth and approach (it recognised quite correctly, for 
instance, the need to move from physical to (non-observable) cognitive elements of ATC 
complexity), it ironically seems to have disregarded a critical aspect of human cognition. 
Namely, that what is complex in one context is not complex in another. As a result, attempts 
to define complexity as a linear composite of factors (e.g. “four parts aircraft density, to one 
part altitude transitions, to one part airspace volume, etc.”) are inherently limited. One 
reference resulting from NASA/FAA’s dynamic density research (a PowerPoint presentation 
on the Phase III results, provided 14 August, 2002) noted that the research partners, 
                                                 
13  The researcher is still faced with the question of what units to use—aircraft per square kilometre in 
the entire airspace? In some defined subset? In some core area? (cf. Stein, 1985). 
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collectively, felt that the results could be improved through the use of different non-linear 
combinations of existing data. 
 

9.3 Cognitive Complexity is More than Geometric Traffic Pattern 

Some past attempts to assess air traffic complexity have relied on geometric relationships 
between aircraft (Histon, 2000), such as aircraft “clustering” behaviour (Cloerec et al, 1999). 
Various geometric approaches to airspace complexity have been proposed. In general, 
strictly geometrical approaches to complexity seem to have been beset with combinatorial 
problems in handling large numbers of aircraft (Durand & Granger, 2003). As Christien et al’s 
(2003) presentation suggests, geometric measures of flow entropy do not always neatly 
capture complexity— in their study of hundreds of “elementary sectors” of European 
airspace, both high and low entropy sectors were associated with a large mix of climbing and 
descending traffic. 
 
More critically (for the purposes of COCA), it seems that no geometric approach to date has 
fully captured the notion of complexity as it is perceived by the controller. Harwood et al. 
(1991) noted that controllers rely more on spatial and temporal patterns within traffic, than on 
the instantaneous positions of aircraft. And the work of Histon et al (2000;2001) suggests 
that abstracted underlying structures are derived that help controllers simplify and 
understand traffic patterns.  It appears, though, that this work has a way to go. 
 

9.4 The Need to Consider the Range of ATC Complexity 

The rationale behind evaluating ATC complexity is that excessive complexity drives taskload, 
which indirectly drives workload, which raises the risk of overload, which ultimately sets an 
upper limit on sector capacity.  Not surprisingly, therefore, the assessment of ATC complexity 
(and, by association, ATC workload) seems to have focused on the possible overload 
condition.  However, operational data draw the underlying logic of this rationale into question: 
There is sufficient operational evidence (on the occurrence of ATC errors) as well as 
theoretical evidence (on human’s poor monitoring performance and potentially-high workload 
under vigilance conditions (Parasuraman, 1987)) that under load might itself pose a serious 
threat to air safety (Jorna, 1993; Stager & Hameluck, 1990; Danaher, 1980).  A review of ATC 
incidents in Canada (Stager, 1991), for example, showed that most occurred during low or 
moderate traffic load and normal traffic complexity.  Similar data have emerged from studies of 
US ATC operational errors (Redding, 1992). In Europe, the 2000 mid-air collision over Germany 
occurred on a clear, quiet night. The suggestion has been made that controllers can adapt to 
heavy traffic peaks, but become error prone as traffic lightens (Fowler, 1980). Colle & Reid 
(1998) suggest that subjective workload ratings are increased, and controller judgement biased 
by low task difficulty. It seems therefore worthwhile to consider the range of possible conditions, 
including the potential impact of excessively low complexity on controller workload. 
 

9.5 Decision Making Biases Contribute to the Perception of Complexity 

What is it that makes a given traffic situation immediately recognisable to a controller as 
“complex?” Clearly, controllers bring more to the job than raw skills. They also bring a high 
level of domain expertise and in many cases years of experience. Part of what drives the 
perception of complexity on the basis of the task itself (i.e., the raw airspace and traffic 
characteristics (Majumdar & Ochieng, 2000)) is the expert recognition that controllers are 
able to make. Research on naturalistic decision making (Jensen, 1992; Klein, 1993) and 
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decision making heuristics and related biases (Kahneman, Tversky & Slovic, 1973) indicate 
that there are systematic patterns in how experts perceive and evaluate data, and estimate 
future trends that can colour the perception of complexity.  
 

9.6 Difficulty of Comparing Across Studies 

The wide variety of measures that have been used to evaluate ATC complexity have 
complicated comparison between studies (Mogford et al., 1995). Despite the acknowledged 
consensus view that complexity causes workload, there seems confusion in the field about 
how to use the terms.  Several studies used complexity factors such as keypad activity or 
pace ratings (Kuhar et al., 1976) or RT time and count (Buckley et al., 1983) that are better 
off seen as outputs measures (i.e., workload) rather than input factors (complexity). Finally, 
inconsistent factor definitions (and/differing amounts of detail provided) also complicated 
cross-study comparisons: Whereas one study would refer to “mix of aircraft type” 
(Grossberg, 1989), another would use the term “Traffic mix, slow versus fast aircraft” 
(Mogford et al., 1997). Further, citations to previous research (e.g.., Author B recounting 
Author A’s metric list) in some cases either reworded, or omitted, certain factor definitions. 
Some interpretation was therefore required in compiling the metrics list that appears as 
Annex A. Despite these various problems-- the differences in definition, the confusion about 
certain terms, the details lost in the retelling-- there seems (as mentioned earlier) general 
agreement on a core set of perhaps 20-30 complexity metrics. 
 

9.7 Complexity is Both Time and Space: Closure Angle and Time of 
Flight  

It is known that shallow aircraft convergence angles are more demanding (Day, 1994; 
Wyndemere, 1996; Pekela & Hilburn 1998) in terms of conflict detection time. For instance, a 
closure angle of 90 degrees is generally less complex than a shallow angle of say 15 
degrees.  
 
However, the inverse relationship between the convergence angle and time-of-flight means 
that convergence angle alone is insufficient to describe complexity of a given aircraft 
convergence (Chatterji & Sridhar, 2001). For example, 90-degree convergences are 
geometrically easy to resolve than shallow convergences. However, the time available for 
resolution is smaller (cf. Chignell & Kerr, 1988). Similarly, head on situations seem easier to 
detect, but (because of high closure speed) are more difficult to resolve. Warren (1997) 
noted that whereas shallow convergence angles are harder to detect, but easier to resolve, 
head on conflicts are easy to detect but harder to resolve. Further, optimal resolution strategy 
differs with angle of convergence. Bilimoria et al (1996), for example, reported that speed 
change worked best (i.e. quickest) for closure angles of less than 19 degrees, and altitude 
resolutions work better for larger angles. Kopardekar and DiMeo (1997) specified a 
Convergence Recognition Index (CRI) that they claim (cf. Kopardekar, 2000) captures the 
degree of difficulty in recognising shallow convergence angles, and is based on how close 
the convergence angle is to 30 degrees. 
 
The studies cited above were carried out in the context of free flight, and the search for 
optimised resolution manoeuvres. The focus was therefore on conflict resolution, as opposed 
to conflict detection difficulty (cf. Chatterji & Sridhar, 2001). In terms of controllers’ perception 
of complexity, however, it is important to note that there seem to be systematic biases in 
terms of both convergence angle and time-of-flight. Whereas shallow angles are (to a point) 
more demanding in terms of conflict detection, it also seems controllers systematically tend 
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to underestimate time-of-flight (Boudes & Cellier, 2000). On the basis of the above, it seems 
that both aspects of conflict situations—convergence angle and time-to-go-- should be 
considered in defining controller complexity. 
 

9.8 Exporting US Results to Europe is Likely Just a Matter of Degree 

Much of the available work was conducted in the US, much of this as part of the Dynamic 
Density program.   One initial concern going into this literature review was that results from 
US studies might not be directly applicable to the European context. Although operational 
practices, traffic patterns and airspace constraints vary between US and Europe (Kirwan et 
al., 2001), little guidance was found on how to import US results. Some of the notable 
differences between US and European air traffic include the higher proportion of vertical 
transitions in the core area of Europe (and the resulting European distinction between upper 
and lower enroute airspace), and the greater occurrence of convective weather in the US 
(especially during the summer months, when storms can force large-scale, long distance 
reroutes).  
 
In retrospect, this seems to be a minor concern. Although there are minor differences across 
studies in how complexity metrics are defined or expressed, on balance there seems a good 
deal of consensus on a core set of about 20-30 recommended metrics.  Whereas the same 
basic set of complexity factors might apply to both the US and European context, factor 
weightings have to be adjusted across the two.  
 

9.9 Known Aspects of Cognitive Performance 

The literature on ATC complexity, and human factors, make it clear that the relationship 
between complexity and workload is an indirect one that is highly mediated by the influence 
of many individual characteristics. Whilst this poses obvious difficulties for ever fully 
capturing the notion of cognitive complexity mathematically, it would be overly pessimistic to 
conclude that the human factor must remain an unknown. In fact, the literature on human 
factors makes it clear that there are known aspects of human cognitive functioning that be 
incorporated into a predictive model of cognitive complexity. 
 
As an example, take what is known about human short term memory and its limitations. It 
has been known for decades (Miller, 1956) that short term memory is limited to 7+2 
elements. In a task that requires repeating random number strings after a fixed delay, people 
almost universally show that they cannot retain more than 7+2 elements in short term 
memory (this number can be as low as four under certain conditions (Cowan, 2001)). Notice, 
though, these elements need not be single digits, but can also be meaningful chunks (such 
as your own phone number14). The concept of chunking has proven useful in explaining how 
experts in chess (de Groot, 1965; Chase & Simon, 1973), contract bridge (Engle & Bukstal, 
1978) and other domains can perform better than novices in tasks relying on short term 
memory. 
  
Three general areas of human performance limitations can be identified. These are: Attention 
and Decision Making; Memory (especially short-term memory), and Perception. Empirical 
studies have revealed systematic aspects of human behaviour in each of these areas. 

                                                 
14 Notice the difficulty you have in recognising your own telephone number read aloud if the speaker 
“chunks” the numbers in a way to which you are unaccustomed. 
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Example aspects of cognitive performance, which would be expected to have a bearing on 
cognitive complexity, include: 

• Attention and memory:  
Short term memory (e.g., 7+2) limitations 
Selective attention limitations  
Sustained attention limitations 
Prospective memory (i.e., remembering to do something in the future) limitations. 
Input and response modality compatibility 

• Perception 
Time estimation errors 
Perceptual errors in closure angle 
Data code (aural vs visual) and short term memory store compatibility problems 

• Decision making 
Heuristic biases in pattern recognition (e.g. shallow planning) 
Memory availability problems 

The proposed next phase of the COCA work intends to cross-check candidate complexity 
factors against a full list of potential cognitive performance problems. The aim would be to 
develop, on the basis of expert (human factors and ATC operations) expert judgments, a 
matrix of “factors-by-failures” that rates the degree to which each candidate complexity factor 
relates to specific potential cognitive failures. The aim would be to both [1] ensure that the 
complexity model adequately covers known aspects of cognitive performance, and [2] use 
the matrix as a “weeding” tool during later model refinement, to help reduce redundancy in 
the complexity model (i.e., to identify for removal potentially redundant complexity factors). 
 

9.10 Potential Risks of Direct Complexity Estimates 

The use of controller ratings has proven valuable in workload estimation (such as via the ISA 
or TLX instruments). Direct controller estimates of complexity, however, run the potential risk 
(at least in dynamic settings) of being heavily coloured by perceived workload. To date, there 
is no evidence that controllers can provide valid and reliable complexity ratings separate from 
rated workload. 
 
 There are ways of confronting this problem (through experimental design, analysis methods, 
and objective physiological-- as opposed to subjective-- workload measures) though these 
seem less feasible outside of controlled simulation environments. Although past studies have 
also used supervisor or over the-shoulder ratings of complexity, it is not clear that these are 
free from similar biases that can arise if one simply asks the controller directly (Thomas et 
al., 2002). In summary, and on the weight of the evidence, it seems that direct complexity 
rating/ranking methods should probably be limited to: 

• Initial elicitation of complexity factors (cf. Pawlak et al., 1996); 
• Subsequent controlled experimental work (i.e. simulation (Boag, 2002)); and 
• Evaluation of static airspace factors, as opposed to dynamic traffic-related factors (cf. 

Mogford et al, 1995). 
 

9.11 Non-Linear Approaches to Modelling Complexity 

The vast majority of the literature on airspace complexity assumes a linear approach to 
capturing airspace complexity. For example, linear regression approaches (Laudeman, 1998; 
Masalonis et al., 2003) attempt to combine factors using fixed regression weights. The main 
shortcoming of this approach is clear: The single resulting regression equation tends to apply 
only to the particular context (sector, time of day, even weather), and does not generalise 
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well to other contexts. What is it that makes a given traffic pattern so complex? In one case it 
might be the pattern of altitude transitions, in another it might be military activity, or weather, 
that restricts full use of airspace and thus limits controller options. A number of alternatives to 
linear regression have been proposed (e.g., Maximum Likelihood Analysis, Time-series 
analysis, Genetic Algorithms).  
 
Non-linear approaches, on the other hand, start from the recognition that complexity factors 
combine in a non-linear way. Though the same constellation of factors might well apply 
across contexts, the relative importance of each differs by context. Several non-linear 
approaches have been used to model airspace complexity. Among them are dynamical 
systems modelling using a non-linear extension of Kolmogorov entropy (Delahaye et al., 
2002). 
 
The non-linear method that seems to have shown the most promise (or at least generated 
the most interest) is non-linear regression, typically by artificial neural networks (Chatterji and 
Sridhar (2001); Majumdar & Ochieng, 2001). In approaching non-linear regression, it might 
help to picture the resulting regression graphs of linear versus non-linear techniques. 
Whereas linear regression, as the name implies, results in a line that represents how factor 
weightings combine, non-linear regression results in a topology—picture a jagged volcano 
with a central peak. Cross sectional views of the radius (viewed in elevation) can be taken. 
An infinite number of such slices, or views can be taken—one for each given airspace 
context.  The same factors (graphically, distance increments out from the volcano peak) 
apply across contexts, but the weightings (again graphically, the profile representing the 
relative height of the factor weightings) differs by context. In practice, a neural network is 
trained to the general topology, and applies to “learning”  new profiles (i.e., contexts). Sridhar 
(2000) reviews work by the Dynamic Density team to investigate the use of neural network 
analysis of complexity factors. Training a neural net with samples of different complexity, 
they demonstrated 100% correct classification of the data. 
 
This concept of non-linear regression has intuitive as well as theoretical appeal. It seems to 
fit well with what is known about naturalistic decision making (Klein, 1989; Klein, 1993), in 
particular that expertise in many fields is often more a process of pattern recognition than of 
action selection. In a variety of fields (whether it is fire control, trauma medicine, or air traffic 
control), once an expert recognises / diagnoses a situation (hopefully correctly) the course of 
action is clear to that expert. Athenes et al (2002) noted just this about air traffic control. 
 

9.12 No Complexity Model is Perfect 

It is important to note that, despite the great effort that has been devoted over the years to 
developing more predictive models of air traffic complexity, to date such models have 
generally managed to explain no more than 50% (r=.70) of the total variance in some 
criterion measure (Majumdar & Ochieng, 2000). The Dynamic Density index, for instance, 
while better than traffic density alone at predicting workload, still fails to account for a 
significant amount of peak workload (Kinnersly, 2000). In effect, “tuning” a linear model to 
certain influences (eg, flight count versus flight duration) can render a model insensitive to 
other influences (Mills, 1998).   
 
Perhaps we can take some comfort in knowing that other domains, some much older than 
ATC, also continue to struggle with the modelling of complex phenomenon.  Take, for 
example, the case of weather modelling. The computational dynamics of weather prediction 
are so complex that they can outstrip the capabilities of even the latest generation of 
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supercomputers15. Despite all of the sophistication of today's weather models, and 
improvements over the decades in prediction accuracy (today's five day projections are now 
as accurate as three-day projections were only ten years ago (American Meteorological 
Society, 2000)), there are still shortcomings in weather modelling and its use.  
 
Consider yourself an amateur meteorologist. If your single prediction indicator (a very simple 
model!) were that tomorrow's weather would be a repeat of today's, you would be correct a 
reasonable percentage of the time.  In fact, such a simple model might be sufficient for your 
needs. If the cost of incorrectly forecasting sunshine is that you fail to carry an umbrella, and 
get wet on the 30-metre walk from your parking space to your office, the costs of being 
wrong do not seem very high. In that case, the utility of such a simple model seems 
adequate. What is surprising is that, with all of the advances in meteorological forecasting 
over the years, there has in some senses been very little practical improvement for the 
average person. Going back to the case of the hypothetical wet office worker, a sophisticated 
model that improves one-day forecasting from 80% to 85% accuracy is of questionable 
added value. As the old adage goes, "never let perfect be the enemy of good enough." 
Perhaps the same pragmatic approach should be adopted in approaching air traffic 
complexity—that any complexity model that performs better than traffic density alone 
represents an improvement. 

                                                 
15 In fact, new non-linear techniques such as fuzzy logic have only very recently been incorporated 
into short term weather forecasting for aviation (cf. Hicks et al, 2003). 
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10. CONCLUSIONS 

 
It is clear from the literature that a great deal of effort has been devoted over the years to 
determining what exactly drives ATC complexity. It is also clear (given that this research, 
after 40 years, is ongoing) that despite the variety of approaches applied, nobody has yet 
managed to solve the problem. As Mogford et al. (1994) put it “Complexity is complex.” Past 
attempts to quantify ATC complexity have tended to rely on geometric properties of the traffic 
stream, or on observable controller behaviour. The main shortcoming of the latter is 
increasingly recognised—namely, that it does not fully consider the cognitive factors 
underlying complexity.This review set out to identify the range of ATC complexity factors that 
have been used, and to distil lessons about which factors might be most appropriate and 
useful for the COCA project.  This effort seems to have been more successful on the first 
than the second score. That is, a number of complexity factors have clearly been used (see 
Annex A). However, beyond perhaps simple traffic density, the literature as a whole does not 
suggest that any specific factors are always valuable.  
 
Rather, the literature underscores the point that there is no single factor, or fixed 
constellation of factors, that drives complexity in every context. What makes traffic “complex” 
in one situation (e.g., a large number of similar callsigns) might be different than what drives 
complexity in another context (e.g., proximity of active military areas, which limit control 
options). “Context” in this case can refer to separate airspaces, or even different times of day 
for the same airspace. 
 
This effort started from the pragmatic realisation that a quantitative model will, by definition, 
always remain an abstraction. This is particularly true in the case of cognitive complexity 
modelling, which, due in large part to human quirks (or individual differences, in the language 
of human factors) will always have some statistical noise and non-linearity, and which will 
defy our efforts to relate complexity directly to workload. To address this shortcoming of most 
previous work into ATC complexity, there is increased interest (e.g., among the Dynamic 
Density team) in pursuing innovative means of factor weightings. In particular, there seems 
growing interest in pursuing such non-linear techniques as neural networks as a way to 
combine factors.  
 
Although this effort set out to capture the cognitive elements underlying ATC complexity, the 
focus was on identifying traffic and task related factors that can be applied across individuals, 
and across different types of airspace. This is to be accomplished by an iterative refinement 
process incorporating subjective techniques (interviews, questionnaires, focus groups, expert 
paired comparisons, and verbal protocol exercises), together with objective (behavioural 
observation and experimental) data collection techniques to refine (and shorten) a list of 
factors that tap controllers’ subjective perception of ATC complexity. What we ultimately aim 
for is a complexity model built upon a set of objective traffic and ATC task factors that  

[1] Has been collected using a variety of techniques;  
[2] Has been kept as broad as possible, so as not to a priori reduce the factor set; 
[3] Has demonstrated validity / generalisability across various kinds of airspace;  
[4] Appears, on the basis of literature review, factor elicitation and experimentation, to 

adequately address underlying cognitive issues that have been shown a relationship to 
cognitive complexity; 

[5] Is refined through statistical development to balance the inherent trade off between 
prediction and interpretability (i.e., a large number of model factors might improve 
prediction, but at the cost of being unwieldy and un-interpretable); and 
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[6] Improves our prediction of controllers’ subjective sense of complexity, beyond that 
currently offered by traffic density alone. 

 
One consistent theme throughout this review has been the notion that the transform between 
complexity and workload is always context specific, and will always contain some statistical 
noise. Individual differences in decision making and control strategies, or slight differences in 
interfaces, mean that a generalised complexity index will never reach 100% predictive 
accuracy in all settings. This should be seen as inevitable, and not necessarily a sign of 
weakness in the approach. The goal of COCA should be to develop and refine a complexity 
index that is sensitive to complexity factors, robust enough to accommodate individual 
differences, and useful across the range of typical interfaces.   
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ANNEX A: COMPLEXITY FACTORS 

The following table is an overview of the various complexity factors identified in this literature 
review. Notice that there were great differences across the literature in how much detail was 
provided for complexity factors. In some cases, factors were specified in great detail 
(including the measurement methods and units—such as “total number of flights effecting a 
heading change of more than 15 degrees, per hour”). In other cases, factors were mentioned 
without any clear indication of how to capture them operationally (e.g. “Military activity”).  The 
occasional overlap between factors (below) reflects this inconsistency. Details are provided 
where available. Factors are categorised according to high level headings (e.g. Airspace 
factors or Traffic Density factors) to aid organisation of the table.  
 
 
1. Aerodromes, number of airline hubs  
2. Aerodromes, total number in airspace 
3. Aircraft mix climbing and descending 
4. Airspace, number of sector sides  
5. Airspace, presence/proximity of restricted airspace 
6. Airspace, proximity of sector boundary 
7. Airspace, sector area 
8. Airspace, sector boundary proximity 
9. Airspace, sector shape 
10. Airspace, total number of navaids  
11. Conflicts, average flight path convergence angle 
12. Conflicts, degree of flight path convergence 
13. Conflicts, number of aircraft in conflict 
14. Conflicts, number of along track 
15. Conflicts, number of crossing 
16. Conflicts, number of opposite heading 
17. Conflicts, total time-to-go until conflict, across all aircraft 
18. Convergence, presence of small angle convergence routes 
19. Coordination, frequency of coordination with other controllers 
20. Coordination, hand-off mean acceptance time 
21. Coordination, hand-offs inbound, total number 
22. Coordination, hand-offs outbound, total number 
23. Coordination, number aircraft requiring hand-off to tower/approach 
24. Coordination, number aircraft requiring vertical handoff 
25. Coordination, number flights entering from another ATC unit 
26. Coordination, number flights entering from same ATC unit 
27. Coordination, number flights exiting to another ATC unit 
28. Coordination, number flights exiting to same ATC unit 
29. Coordination, number of communications with other sectors 
30. Coordination, number of other ATC units acceptiing hand-offs 
31. Coordination, number of other ATC units handing off aircraft 
32. Coordination, total number LOAs 
33. Coordination, total number of handofffs 
34. Coordinations, total number required 
35. Equipment status 
36. Flight entries, number aircraft entering in climb 
37. Flight entries, number aircraft entering in cruise 
38. Flight entries, number aircraft entering in descent 
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39. Flight entries, number entering per unit time 
40. Flight exits, number aircraft exiting in climb 
41. Flight exits, number aircraft exiting in cruise 
42. Flight exits, number aircraft exiting in descent 
43. Flight Levels, average FL per aircraft 
44. Flight Levels, difference between upper and lower 
45. Flight Levels, number available within sector 
46. Flight time, mean per aircraft 
47. Flight time, total 
48. Flight time, total time in climb 
49. Flight time, total time in cruise 
50. Flight time, total time in descent 
51. Flight type, emergency / special flight operations, number 
52. Flow organisation, altitude, number of altitudes used 
53. Flow organisation, average flight speed 
54. Flow organisation, complex routing required 
55. Flow organisation, distribution of Closest Point of Approach 
56. Flow organisation, flow entropy/structure 
57. Flow organisation, geographical concentration of flights 
58. Flow organisation, multiple crossing points  
59. Flow organisation, number of altitude transitions 
60. Flow organisation, number of current climbing aircraft proportional to historical maximum 
61. Flow organisation, number of current descending aircraft proportional to historical 

maximum 
62. Flow organisation, number of current level aircraft proportional to historical maximum 
63. Flow organisation, number of intersecting airways 
64. Flow organisation, number of path changes total 
65. Flow organisation, routes through sector, total number 
66. Flow organisation, vertical concentration 
67. Other, controller experience 
68. Other, level of aircraft intent knowledge 
69. Other, pilot language difficulties 
70. Other, radar coverage 
71. Other, resolution degrees of freedom 
72. Procedural requirements, number of required procedures 
73. RT, average duration of Air-Ground communications 
74. RT, callsign confusion potential 
75. RT, frequency congestion 
76. RT, frequency of hold messages sent to aircraft 
77. RT, total number of Air-Ground communications 
78. Separation standards (separation/spacing/standards) 
79. Staffing 
80. Time, total climb 
81. Time, total cruise 
82. Time, total descent 
83. Traffic density, aircraft per unit volume 
84. Traffic density, average instantaneous count 
85. Traffic density, average sector flight time 
86. Traffic density, localised traffic density / clustering 
87. Traffic density, mean distance traveled 
88. Traffic density, number flights during busiest 3 hours 
89. Traffic density, number flights during busiest 30 minutes 
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90. Traffic density, number flights per hour 
91. Traffic density, number of arrivals 
92. Traffic density, number of current aircraft proportional to historical maximum  
93. Traffic density, number of departures 
94. Traffic density, total fuel burn per unit time 
95. Traffic density, total number aircraft 
96. Traffic distribution/dispersion 
97. Traffic mix, aircraft type, jets vs props 
98. Traffic mix, aircraft type, slow vs fast aircraft 
99. Traffic mix, climbing vs descending 
100. Traffic mix, military activity 
101. Traffic mix, number of special flights (med, local traffic) 
102. Traffic mix, proportion of arrivals, departures and overflights 
103. Traffic mix, proportion of VFR to IFR pop up aircraft 
104. Weather 
105. Weather, at or below minimums (for aerodrome) 
106. Weather, inclement (winds, convective activity) 
107. Weather, proportion of airspace closed by weather 
108. Weather, reduced visibility 
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ANNEX B: DATA COLLECTION METHODS 

 
The following is a general overview of the types of methods that can be used to elicit, refine, 
and validate ATC complexity factors. This list expands that presented in table 1, section 6.2, 
and incorporates methods that have not necessarily been applied yet to the study of ATC 
workload and/or complexity. Four main categories of methods are distinguished: 
Observational, Interview-based, Experimental, and Analytic. Notice that many of the listed 
methods encompass a number of specific techniques (“Task Analysis,” for instance, refers to 
a whole family of possible techniques and tools for decomposing task performance).  The 
following also provides an assessment of the model development stage (Factor Elicitation, 
Refinement, or Validation abbreviated E,R, and V respectively)  at which the method seems 
most useful to the COCA project. This assessment was based on knowledge of the types of 
data each method provides, but also on the costs and difficulties (e.g. intrusiveness, 
equipment costs, time, etc.) associated with each. 
  
 
 Method     Stage 
 
OBSERVATONAL      

1. Field Observations    E, R, V   
2. Familiarisation    E   
3. Videotape analysis   E, R, V   
4. Over-the-shoulder assessments  E, R, V  
5. Behavioural analysis   E, R,V  

  Activity analysis   
  Communication analysis   
  Voice command analysis   
 
INTERVIEW      

6. Expert judgement sessions  E, R  
 Eg meta-evaluation 

7. Rating and ranking exercises  E, R  
8. Focus groups    E, R  
9. Cognitive walkthrough   E, R 
10. Critical decision making   E, R  
11. Verbal protocol analysis   E, R  
12. Structured interview   E, R  
13. Semi-structured field interview  E, R  
14. Workload ratings    R, V   
  Instantaneous  

   eg ISA   
  Post session  
   eg TLX, ATWIT   

15. Questionnaires / Surveys   E, R  
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 Method     Stage 
 
EXPERIMENTAL / QUASI-EXPERIMENTAL      

16. Static simulations    E, R  
17. Small scale simulation   E,R  
18. Shadow mode trials    R, V   
19. Physiological measurement   R, V  

 Eye tracking measures  
  Heart rate measures   
  Brain activity measures    

20. Task performance    R, V   
 Primary task performance   

  Secondary task performance   
ANALYTIC      

21. Task Analysis      E, R  
22. Repertory Grid Analysis   E,R 
23. Task modelling    E,R 

eg MicroSAINT, HOS 
24. Cognitive Modelling    V  

  IPME, PUMA, MIDAS 
25. Monte Carlo simulation   V   
26. Analysis of operational data   R, V    
27. Analysis of modelled workload  R, V  
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ANNEX C: WORKLOAD INDICATORS 

1. Air Traffic Workload Input Technique (ATWIT)  
2. Auditory Choice Secondary Task Response Time  
3. Bedford Workload Scale  
4. Blink latency  
5. Blink rate  
6. Blink-saccade asynchrony  
7. Blood Pressure 
8. Brain Evoked Potentials (a.k.a. Evoked Response Potentials, or ERPs) 
9. Card Sorting secondary task performance 
10. Choice Reaction Time secondary task performance 
11. Classification secondary task performance 
12. Cooper Harper Rating Scale 
13. Dichotic Listening performance 
14. Electro-encephalographic (EEG) pattern 
15. Event Related (Evoked Cortical) Potential  
16. Galvanic Skin Response GSR 
17. Head down time 
18. Heart Rate 
19. Heart Rate Variability 
20. Instantaneous Self Assessment (ISA) 
21. Lexical Decision secondary task performance 
22. Magneto-encephalographic (MEG) activity 
23. Mental Arithmetic performance 
24. Modified Cooper-Harper Rating Scale 
25. NASA Task Load Index (TLX) 
26. Pilot Objective/Subjective Workload Assessment Technique (POSWAT) 
27. PUMA 
28. Pupil diameter 
29. Radio Communications embedded task 
30. Respiration rate 
31. Scanning entropy (randomness) 
32. Secondary task detection response time 
33. Secondary task Interval production accuracy 
34. Secondary Task signal detection hit rate 
35. Secondary Task Time estimation accuracy 
36. Serial Recall 
37. Sternberg auditory memory search performance 
38. Sternberg visual memory search performance 
39. Subject Matter Ratings 
40. Subjective Workload Assessment Technique (SWAT) 
41. Taylor et al 7-point rating scale questionnaire  
42. Time Estimation Secondary Task 
43. Verbal Protocol Analysis 
44. Visual Dwell Time 
45. Visual Fixation Frequency 
46. Visual Saccade Duration  
47. Visual Saccade Rate 
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